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ABSTRACT OF THE DISSERTATION

Security of Interconnected Stochastic Dynamical Systems

by

Rajasekhar Anguluri

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, December 2019

Dr. Fabio Pasqualetti, Chairperson

Modern dynamical systems are large and inevitably comprise different subsystems

that are often integrated with cyber (computation and communication) components. The

applications of these systems are far reaching, ranging from power and water networks, to

telecommunication and transportation systems etc. Recently, researchers and hackers have

shown that these systems are vulnerable to attacks targeting their physical infrastructure

or the signals exchanged between the physical and cyber layers. Given the interconnected

nature of dynamical systems, and the fact that each subsystem usually has only partial

knowledge or measurements of other interconnected units, the security question arises as

to whether sophisticated attackers can hide their action to the individual subsystems while

inducing system-wide critical perturbations.

This thesis addresses problems concerning security of interconnected systems that

are subject to random (stochastic) disturbances. Our contribution is twofold. First, we

investigate whether, and to what extent, coordination among different subsystems and

knowledge of the global system dynamics is necessary to detect attacks in interconnected

viii



systems. We consider centralized and decentralized detectors, which differ primarily in

their knowledge of the system model, and characterize the performance of the two detectors

and show that, depending on the system and attack parameters, each of the detectors can

outperform the other. Hence, it may be possible for the decentralized detector to outperform

its centralized counterpart, despite having less information about the system dynamics. We

provide an explanation for this counter-intuitive result and illustrate our results through

simulations. Second, we study an attack design problem for interconnected systems where

the attacker compromises a subsystem at each time, based on a pre-computed probabilistic

rule. The goal of the attacker is to degrade the system performance, which is measured based

on a quadratic function of the system state, while remaining undetected from a centralized

detector. We show that selectively compromising different subsystems over time increases

the severity of the attacks with respect to compromising a fixed subsystem at each time.

We study another related security problem for network systems, where changes

in the statistical properties of an input driving certain network nodes has to be detected

by remotely located sensors. To detect the changes, we associate a maximum-a-posteriori

detector for a given set of sensors, and study its detection performance as function of the

network topology, and the graphical distance between the input and sensor locations. We

derive conditions under which the detection performance obtained when sensors are located

on a network cut is not worse (resp. not better) than the performance obtained by measuring

all nodes of the subnetwork induced by the cut and not containing the input nodes. Our

results provide insights into the sensor placement from a detection-theoretic point of view.

ix



Contents

List of Figures xii

1 Introduction 1

2 Centralized Versus Decentralized Detection of Attacks in Stochastic In-
terconnected Systems 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Problem setup and preliminary notions . . . . . . . . . . . . . . . . . . . . . 8
2.3 Local, decentralized, and centralized detectors . . . . . . . . . . . . . . . . . 11

2.3.1 Processing of measurements . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Statistical hypothesis testing framework . . . . . . . . . . . . . . . . 14

2.4 Comparison of centralized and decentralized detection of attacks . . . . . . 18
2.5 Design of optimal attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Numerical comparison of centralized and decentralized detectors . . . . . . 26
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 A Probabilistic Approach to Design Switching Attacks against Intercon-
nected Systems 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Problem setup and preliminary notions . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Nominal system model . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Objectives of attacker and attacked system model . . . . . . . . . . 46
3.2.3 Relation between nominal and attacked system . . . . . . . . . . . . 47

3.3 Detection framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Characterization of the detection probability . . . . . . . . . . . . . 49
3.3.2 Upper bound on the detection probability . . . . . . . . . . . . . . . 51
3.3.3 Asymptotic upper bound . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Design of an optimal probabilistic strategy . . . . . . . . . . . . . . . . . . . 53
3.4.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



4 Network Theoretic Analysis of Maximum a Posteriori Detectors for Op-
timal Sensor Placement 63
4.1 Preliminaries and problem setup . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Detection performance of the MAP detector . . . . . . . . . . . . . . . . . . 69
4.3 Network analysis of the MAP detector . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Single input single output (SISO) line networks . . . . . . . . . . . . 80
4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Conclusions and Future Work 101

Bibliography 104

xi



List of Figures

2.1 False alarm probability of the decentralized detector as a function of local
detectors’ false alarm probabilities. . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Probability density function of the test statistic Λc, under hypothesis H1, as
a function of detection threshold τc. . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Illustration of Theorems 7 and 8 as a function of the non-centrality parame-
ters number of local detectors. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Difference of of the centralized and decentralized detection probabilities as a
function of local non-centrality parameter λi for different values of centralized
non-centrality parameter λc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Single-line diagram of IEEE RTS-96 power network, which is composed of
three weakly-coupled areas (subsystems). . . . . . . . . . . . . . . . . . . . 27

2.6 Scenarios in which the centralized detector outperforms the decentralized
detector and vice versa, on the IEEE RTS-96 power network. . . . . . . . . 28

2.7 Performance degradation induced by undetectable optimal attacks on the
IEEE RTS-96 power network. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Detection probability (3.13) and its corresponding upper bound (3.16) as a
function of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Performance degradation of interconnected systems (3.4), evaluated by the
cost function value of (P.2) (see (3.5)), for various subsystem selecting rules. 57

4.1 Illustration of network partitions induced by a node cutset. . . . . . . . . . 68
4.2 Toeplitz line network with n nodes. The q-th node is injected with the input,

and the j-th node represents the cutset node. . . . . . . . . . . . . . . . . . 81
4.3 Illustration of a single node cutset on a network consisting of 10 nodes. . . 83
4.4 Actual and asymptotic error probabilities of the MAP and LD-MAP detec-

tors associated with various nodes of the network shown in Fig. 4.3. . . . . 84
4.5 Graph associated with a randomly generated network consisting of 50 nodes. 86
4.6 Actual and asymptotic error probabilities of the MAP and LD-MAP detec-

tors associated with the node cutset Cd and all possible 3 node subsets of
Cd t P of the network shown in Fig. 4.5. . . . . . . . . . . . . . . . . . . . . 87

xii



Chapter 1

Introduction

Modern dynamical systems are increasingly becoming more distributed, diverse,

complex and integrated with cyber (computation and communication) components. Typ-

ically, these systems are composed of multiple subsystems, which are interconnected via

physical or virtual couplings among the states of subsystems. An example such system is

the smart grid, which arises from the interconnection of smaller power systems at differ-

ent geographical locations, and whose performance depends on other critical infrastructures

including the transportation network and the water system. In contrast with legacy dynam-

ical systems (which include traditional control systems), typically isolated from the outer

world, the cyber and physical components of modern dynamical systems are interconnected

via local data networks, and connected to the outer world via the Internet. This poses sig-

nificant risks to personal privacy, economic security, and infrastructure. Further, the fact

that each subsystem usually has only partial knowledge or measurements of other inter-

connected units, the security question arises as to whether sophisticated attackers can hide
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their action to the individual subsystems while inducing system-wide critical perturbations.

Due to the vital role of these systems in everyday life, ensuring security of these systems,

as of today, is one of the main focuses of the National Security [59].

Concerns regarding security of dynamical systems are not new, as several publi-

cations on systems fault diagnosis isolation, and recovery testify; see for example [4, 34].

Interconnected dynamical systems integrated with cyber and communication components,

however, suffer from specific vulnerabilities which do not affect classical dynamical systems,

and for which appropriate attack detection and isolation techniques need to be developed.

For instance, relying on wireless communication networks to transmit measurements and

control signals heavily increases the possibility of intentional and malignant attacks against

various subsystems. Instead, traditional IT security methods, such as authentication and

cryptography methods, are not always adequate for satisfactory protection of dynamical

systems. The famous Stuxnet attack [26] is an excellent example to demonstrate the fact

that IT security methods do not exploit the compatibility of the measurements with the

underlying physical process and control mechanism, which are the primary objective of a

protection scheme [10]. In fact, the supreme level of sophistication of Stuxnet attack pre-

vented some well known anti-virus software to detect it initially [42]. Moreover, the existing

IT security methods are also not effective against insider attacks carried out by authorized

entities, for instance the Maroochy Water Breach case [73], and they also fail against attacks

targeting directly the physical dynamics [19].

With security emerging as a major concern for dynamical systems, different mod-

eling frameworks and protection schemes have been proposed for a variety of systems and
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attacks; see for example survey papers [69, 48, 30, 21]. Contrary to these existing works,

in this thesis, we study the performance limitations of several attack detection schemes for

both interconnected and networked dynamical systems. The main contributions of each

chapter are summarized below:

In chapter 2, we consider a security problem for interconnected systems governed

by linear, discrete, time-invariant, stochastic dynamics, where the objective is to detect

exogenous attacks by processing the measurements at different locations. We consider two

classes of detectors, namely centralized and decentralized detectors, which differ primarily

in their knowledge of the system model. In particular, a decentralized detector has a model

of the dynamics of the isolated subsystems, but is unaware of the interconnection signals

that are exchanged among subsystems. Instead, a centralized detector has a model of the

entire dynamical system. We characterize the performance of the two detectors and show

that, depending on the system and attack parameters, each of the detectors can outperform

the other. In particular, it may be possible for the decentralized detector to outperform its

centralized counterpart, despite having less information about the system dynamics, and

this surprising property is due to the nature of the considered attack detection problem. To

complement our results on the detection of attacks, we propose and solve an optimization

problem to design attacks that maximally degrade the system performance while maintain-

ing a pre-specified degree of detectability. Finally, we validate our findings via numerical

studies on an electric power system.

In chapter 3, we study an attack design problem for interconnected systems where

the attacker compromises a subsystem at each time, which is selected randomly based on

3



a pre-computed probabilistic policy. The objective of the attacker is to degrade the system

performance, which is measured based on a quadratic function of the system state, while

remaining undetected from a centralized detector. First, we derive an explicit expression

for the detection probability, analyze its properties, and compute an upper bound. Then,

we use our upper bound to formulate and numerically solve an optimization problem for

the computation of optimal attack strategies. Finally, we validate our results and show that

our probabilistic attack strategy outperforms a constant attack strategy that compromises

a fixed subsystem at each time.

In chapter 4, we consider the optimal sensor placement problem in a network

system for detecting abrupt changes in the statistical properties of a stationary stochastic

input driving certain network nodes, under the constraint that the sensor locations should

be at least a specified distance apart from the input nodes. This specific detection problem

is motivated by emerging monitoring needs for cyber-physical networks, where intrusions

or abnormalities in cyber and human components may cause subtle changes in stochastic

driving or input signals, and ultimately incur significant risk to the network operation. As it

may be impractical or impossible to directly monitor these input signals, we exploit network

structure to identify changes in the driving signals. We consider two scenarios: one in which

the changes occurs in the mean of the input, and the other where the changes are allowed

to happen in the covariance of the input. In both the scenarios, to detect the changes,

we associate a maximum-a-posteriori (MAP) detector for a given set of sensors, and study

its detection performance as function of the network topology, and the graphical distance

between the input nodes and the sensors location. When the input and measurement noise
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follows a Gaussian distribution, we show that, as the number of measurements goes to

infinity, the MAP detectors’ performance can be studied using the input-output transfer

function matrix gain of the network system. We derive conditions under which the detection

performance obtained when sensors are located on a network cut is not worse (respectively

not better) than the performance obtained by measuring all nodes of the subnetwork induced

by the cut and not containing the input nodes. Our results provide structural insights into

the sensor placement from a detection-theoretic viewpoint. Finally, we illustrate our findings

through numerical examples.

We conclude the thesis with chapter 5, in which we also discuss some aspects for

future research in the area of secure dynamical systems. We will also indicate possibilities

of harnessing the power of Random Matrix Theory to develop suitable tools to analyze

security in data-driven dynamical systems.
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Chapter 2

Centralized Versus Decentralized

Detection of Attacks in Stochastic

Interconnected Systems

2.1 Introduction

In this chapter we investigate whether, and to what extent, coordination among

different subsystems and knowledge of the global system dynamics is necessary to detect

attacks in interconnected systems. In fact, while existing approaches for the detection of

faults and attacks typically rely on a centralized detector [61, 49, 13], the use of local

detectors would not only be computationally convenient, but it would also prevent the

subsystems from disclosing private information about their plants. As a counterintuitive

result, we will show that local and decentralized detectors can, in some cases, outperform a
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centralized detector, thus supporting the development of distributed and localized theories

and tools for the security of cyber-physical systems.

Main contributions: This work features three main contributions. First, we propose

centralized and decentralized schemes to detect unknown and unmeasurable sensor attacks

in stochastic interconnected systems. Our detection schemes are based on the statistical

decision theoretic framework that falls under the category of simple versus composite hy-

potheses testing. We characterize the probability of false alarm and the probability of

detection for both detectors, as a function of the system and attack parameters. Second,

we compare the performance of the centralized and decentralized detectors, and show that

each detector can outperform the other for certain system and attack configurations. We

discuss that this counterintuitive phenomenon is inherent with the simple versus composite

nature of the considered attack detection problem, and provide numerical examples of this

behavior. Third, we formulate and solve an optimization problem to design attacks against

interconnected systems that maximally affect the system performance as measured by the

mean square deviation of the state while remaining undetected by the centralized and de-

centralized detectors with a pre-selected probability. Finally, we validate our theoretical

findings on the IEEE RTS-96 power system model.

Related Work: Centralized attack detectors have been the subject of extensive research in

the last years [92, 27, 74, 46, 94, 55, 53, 14, 41], where the detector has complete knowledge

of the system dynamics and all measurements. Furthermore, these studies use techniques

from various disciplines including game theory, information theory, fault detection and sig-

nal processing, and have a wide variety of applications [49]. Instead, decentralized attack
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detectors, where each local detector decides on attacks based on partial information and

measurements about the system, and local detectors cooperate to improve their detection

capabilities, have received only limited and recent attention [22, 58, 40, 95, 33]. Decentral-

ized detection schemes have also been studied for fault detection and isolation (FDI). In such

schemes, multiple local detectors make inferences about either the global or local process,

and transmit their local decisions to a central entity, which uses appropriate fusion rules to

make the global decision[78, 84, 11, 3, 66]. Methods to improve the detection performance

by exchanging information among the local detectors have also been proposed [90, 71, 29].

These decentralized algorithms are typically complex [61], their effectiveness in detecting

unknown and unmeasurable attacks is difficult to characterize, and their performance is

believed to be inferior when compared to their centralized counterparts. To the best of our

knowledge, a rigorous comparison of centralized and decentralized attack detection schemes

is still lacking, which prevents us from assessing whether, and to what extent, decentralized

and distributed schemes should be employed for attack detection.

2.2 Problem setup and preliminary notions

We consider an interconnected system with N subsystems, where each subsystem

obeys the discrete-time linear dynamics

xi(k + 1) = Aiixi(k) +Biui(k) + wi(k),

yi(k) = Cixi(k) + vi(k),

(2.1)

with i ∈ {1, . . . , N}. In the above equation, the vectors xi ∈ Rni and yi ∈ Rri are the state

and measurement of the i−th subsystem, respectively. The process noise wi(k) ∼ N (0,Σwi)

8



and the measurement noise vi(k) ∼ N (0,Σvi) are independent stochastic processes, and wi

is assumed to be independent of vi, for all k ≥ 0. Further, the noise vectors across different

subsystems are assumed to be independent at all times. The i−th subsystem is coupled

with the other subsystems through the term Biui, which takes the form

Bi =

[
Ai1 · · · Ai,i−1 Ai,i+1 · · · AiN

]
, and

ui =

[
xT1 · · · xTi−1 xTi+1 · · · xTN

]T
.

The input Biui =
∑N

j 6=iAijxj represents the cumulative effect of subsystems j on subsystem

i. Hence, we refer to Bi as to the interconnection matrix, and to ui as to the interconnection

signal, respectively. We allow for the presence of attacks compromising the dynamics of

the subsystems, and model such attacks as exogenous unknown inputs. In particular, the

dynamics of the i−th subsystem under the attack uai with matrix Ba
i read as

xi(k + 1) = Aiixi(k) +Biui(k) +Ba
i u

a
i (k) + wi(k), (2.2)

where uai ∈ Rmi . In vector form, the dynamics of overall system under attack read as

x(k + 1) = Ax(k) +Baua(k) + w(k),

y(k) = Cx(k) + v(k),

(2.3)

where φ =

[
φT1 . . . φTN

]
, with φ standing for x ∈ Rn, w ∈ Rn, ua ∈ Rm, y ∈ Rr, v ∈ Rr,

n =
∑N

i=1 ni, m =
∑N

i=1mi, and r =
∑N

i ri. Moreover, as the components of the vectors w

and v are independent and Gaussian, w ∼ N (0,Σw) and v ∼ N (0,Σv), respectively, where

9



Σw = blkdiag (Σw1 , . . . ,ΣwN ) and Σv = blkdiag (Σv1 , . . . ,ΣvN ). Further,

A =


A11 · · · A1N

...
. . .

...

AN1 · · · ANN

 , B
a =


Ba

1 · · · 0

...
. . .

...

0 · · · Ba
N

 ,

and C = blkdiag (C1, . . . , CN ).

We assume that each subsystem is equipped with a local detector, which uses the

local measurements and knowledge of the local dynamics to detect the presence of local

attacks. In particular, the i−th local detector has access to the measurements yi in (2.1),

knows the matrices Aii, Bi, and Ci, and the statistical properties of the noise vectors wi

and vi. Yet, the i−th local detector does not know or measure the interconnection input ui,

and the attack parameters Ba
i and uai . Based on this information, the i−th local detector

aims to detect whether Ba
i u

a
i 6= 0. The decisions of the local detectors are then processed

by a decentralized detector, which aims to detect the presence of attacks against the whole

interconnected system based on the local decisions. Finally, we assume the presence of a

centralized detector, which has access to the measurements y in (2.3), and knows the matrix

A and the statistical properties of the overall noise vectors w and v. Similarly to the local

detectors, the centralized detector does not know or measure the attack parameters Ba and

ua, and aims to detect whether Baua 6= 0. We postpone description of our detectors to

Section 2.3. To conclude this section, note that the decentralized and centralized detectors

have access to the same measurements. Yet, these detectors differ in their knowledge of the

system dynamics, which determines their performance as explained in Section 2.4.

Remark 1 (Control input and initial state) The system setup in (2.2) and (2.3) typ-
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ically includes a control input. However, assuming that each subsystem knows its control

input, it can be omitted without affecting generality. Further, as the detectors do not have

information about the initial state, we assume without loss of generality, that the initial

state is deterministic and unknown to the detectors. �

2.3 Local, decentralized, and centralized detectors

In this section we formally describe our local, decentralized, and centralized detec-

tors, and characterize their performance as a function of the available measurements and

knowledge of the system dynamics. To this aim, let T > 0 be an arbitrary time horizon

and define the vectors

Yi =

[
yTi (1) yTi (2) · · · yTi (T )

]T
, (2.4)

which contains the measurements available to the i−th detector, and

Yc =

[
yT(1) yT(2) · · · yT(T )

]T
, (2.5)

which contains the measurements available to the centralized detector. Both the local and

centralized detectors perform the following three operations in order:

1. Collect measurements as in (2.4) and (2.5), respectively;

2. Process measurements to filter unknown variables; and

3. Perform statistical hypotheses testing to detect attacks (locally or globally) using the

processed measurements.
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The decisions of the local detectors are then used by the decentralized detector, which

triggers an alarm if any of the local detectors does so. We next characterize how the detectors

process their measurements and perform attack detection via statistical hypothesis testing.

2.3.1 Processing of measurements

The measurements (2.4) and (2.5) depend on parameters that are unknown to

the detectors, namely, the system initial state and the interconnection signal (although the

process and measurement noises are also unknown, the detectors know their statistical prop-

erties). Thus, to test for the presence of attacks, the detectors first process the measurement

vectors to eliminate their dependency on the unknown parameters. To do so, using equa-

tions (2.1) and (2.2), define the observability matrix and the attack, interconnection, and

noise forced response matrices of the i−th subsystem as

Oi =


CiAii

...

CiA
T
ii

 , F
(a)
i =


CiB

a
i . . . 0

...
. . .

...

CiA
T−1
ii Ba

i . . . CiB
a
i

 ,

F (u)
i =


CiBi . . . 0

...
. . .

...

CiA
T−1
ii Bi . . . CiBi

 , F
(w)
i =


Ci . . . 0

...
. . .

...

CiA
T−1
ii . . . Ci

 .

Analogously, for the system model (2.3) define the matrices Oc, F (w)
a , and F (w)

c , which are

constructed as above by replacing Ai, B
a
i , and Ci with A, Ba, and C, respectively. The

12



measurements (2.4) and (2.5) can be written as follows:

Yi = Oixi(0) + F (u)
i Ui + F (a)

i Uai + F (w)
i Wi + Vi, (2.6)

Yc = Ocx(0) + F (a)
c Ua + F (w)

c W + V, (2.7)

where Ui =

[
uTi (0) uTi (1) · · · uTi (T − 1)

]T
. The vectors Uai , Ua, Wi and W are the

time aggregated signals of uai , u
a, wi, and w, respectively, and are defined similarly to Ui.

Instead, Vi =

[
vTi (1) vTi (2) · · · vTi (T )

]T
, and V is defined similarly to Vi. To eliminate

the dependency from the unknown variables, let Ni and Nc be bases of the left null spaces

of the matrices

[
Oi F (u)

i

]
and Oc, respectively, and define the processed measurements as

Ỹi = NiYi = Ni

[
F (a)
i Uai + F (w)

i Wi + Vi

]
,

Ỹc = NcYc = Nc

[
F (a)
c Ua + F (w)

c W + V
]
,

(2.8)

where the expressions for Ỹi and Ỹc follows from (2.6) and (2.7). Notice that, in the absence

of attacks (Ua = 0), the measurements Ỹi and Ỹc depend only on the system noise. Instead,

in the presence of attacks, such measurements depend on the attack vector, which may leave

a signature for the detectors.1 We now characterize the statistical properties of Ỹi and Ỹc.

Lemma 2 (Statistical properties of the processed measurements) The processed

measurements Ỹi and Ỹc satisfy

Ỹi ∼ N (βi,Σi) , for all i ∈ {1, . . . , N}, and

Ỹc ∼ N (βc,Σc) ,

(2.9)

1If Im(Ba
i ) ⊆ Im(Bi), then NiF (a)

i = 0 and the processed measurements do not depend on the attack.
Thus, our local detection technique can only be successful against attacks that do not satisfy this condition.

13



where

βi = NiF (a)
i Uai ,

βc = NcF (a)
c Ua,

Σi = Ni

[(
F (w)
i

)
(IT ⊗ Σwi)

(
F (w)
i

)T
+ (IT ⊗ Σvi)

]
NT
i ,

Σc = Nc

[(
F (w)
c

)
(IT ⊗ Σw)

(
F (w)
c

)T
+ (IT ⊗ Σv)

]
NT
c .

(2.10)

A proof of Lemma 2 is postponed to the Appendix. From Lemma 2, the mean

vectors βi and βc depend on the attack vector, while the covariance matrices Σi and Σc are

independent of the attack. This observation motivates us to develop a detection mechanism

based on the mean of the processed measurements, rather the covariance matrices.

2.3.2 Statistical hypothesis testing framework

In this section we detail our attack detection mechanism, which we assume to be

the same for all local and centralized detectors, and we characterize its false alarm and

detection probabilities. We start by analyzing the test procedure of the i−th local detector.

Let H0 be the null hypothesis, where βi = 0 and the system is not under attack, and let H1

be the alternative hypothesis, where βi 6= 0 and the system is under attack. To decide which

hypothesis is true, or equivalently whether the mean value of the processed measurements

is zero, we resort to the generalized log-likelihood ratio test (GLRT):

Λi , Ỹ
T
i Σ−1

i Ỹi
H1

≷
H0

τi, (2.11)

where the threshold τi ≥ 0 is selected based on the desired false alarm probability of the test

(2.11) [65]. For a statistical hypothesis testing problem, the false alarm probability equals

14



the probability of deciding for H1 when H0 is true, while the detection probability equals

the probability of deciding for H1 when H1 is true. While the former is used for tuning the

threshold, the latter is used for measuring the performance of the test. Formally, the false

alarm and detection probabilities of (2.11) are the probabilities that are conditioned on the

hypothesis H0 and H1, respectively, and are symbolically denoted as

PFi = Pr [Λi ≥ τi|H0] and PDi = Pr [Λi ≥ τi|H1] .

Similarly, the centralized detector test is defined as

Λc , Ỹ
T
c Σ−1

c Ỹc
H1

≷
H0

τc, (2.12)

where τc ≥ 0 is a preselected threshold, and its false alarm and detection probabilities are

denoted as PFc and PDc . We next characterize the false alarm and detection probabilities

of the detectors with respect to the system and attack parameters.

Lemma 3 (False alarm and detection probabilities of local and centralized de-

tectors) The false alarm and the detection probabilities of the tests (2.11) and (2.12) are,

respectively,

PFi = Q(τi; pi, 0), PDi = Q(τi; pi, λi), and

PFc = Q(τc; pc, 0), PDc = Q(τc; pc, λc),

(2.13)

where

pi = Rank(Σi), pc = Rank(Σc),

λi = (Uai )TMi(U
a
i ), λc = (Ua)TMc(U

a),

(2.14)
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and

Mi =
(
NiF (a)

i

)T
Σ−1
i

(
NiF (a)

i

)
,

Mc =
(
NcF (a)

c

)T
Σ−1
c

(
NcF (a)

c

)
.

(2.15)

Lemma 3, whose proof is postponed to the Appendix, allows us to compute the

false alarm and detection probabilities of the detectors using the decision thresholds, the

system parameters, and the attack vector. Moreover, for fixed PFi and PFc , the detection

thresholds are computed as τc = Q−1(PFc ; pc, 0) and τi = Q−1(PFi ; pi, 0), where Q−1(·) is the

inverse of the complementary Cumulative Distribution Functions (CDF) that is associated

with a central chi-squared distribution. The parameters pi, pc and λi, λc in Lemma 3 are

referred to as degrees of freedom and non-centrality parameters of the detectors.

Remark 4 (System theoretic interpretation of detection probability parameters)

The degrees of freedom and the non-centrality parameters quantify the knowledge of the

detectors about the system dynamics and the energy of the attack signal contained in the

processed measurements. In particular:

(Degrees of freedom pi) The detection probability and the false alarm probability are both

increasing functions of the degrees of freedom pi, because the Q function in (2.13) is an

increasing function of pi. Thus, increasing pi by increasing the number of sensors or the

horizon T , does not necessarily lead to an improvement of the detector performance.

(Non-centrality parameter λi) The non-centrality parameter λi measures the energy of the

attack signal contained in the processed measurements. In the literature of communication

and signal processing, the non-centrality parameter is often referred to as signal to noise
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ratio (SNR) [65]. For fixed τi and pi, the detection probability increases monotonically with

λi, and approaches the false alarm probability as λi tends to zero.

(Decision threshold τi) For fixed λi and pi, the probability of detection and the false alarm

probability are monotonically decreasing functions of the detection threshold τi. This is due

to the fact that the complementary CDFs, which define the false alarm and detection proba-

bilities, are decreasing functions of τi. As we show later, because of the contrasting behaviors

of the false alarm and detection probabilities with respect to all individual parameters, the

decentralized detector can outperform the centralized detector. �

We now state a result that provides a relation between the degrees of freedom

(pi and pc) and the non-centrality parameters (λi and λc) of the local and the centralized

detectors. This result plays a central role in comparing the performance of these centralized

and decentralized detectors.

Lemma 5 (Degrees of freedom and non-centrality parameters) Let pi, pc and λi,

λc be the degrees of freedom and non-centrality parameters of the i−th local and centralized

detectors, respectively. Then, pi≤pc and λi≤λc for all i ∈ {1, . . . , N}.

A proof of Lemma 5 is postponed to the Appendix. In loose words, given the

interpretation of the degrees of freedom and noncentrality parameters in Remark 4, Lemma

(5) states that a centralized detector has more knowledge about the system dynamics (pi ≤

pc) and its measurements contain a stronger attack signature (λi ≤ λc) than any of the

i−th local detector. Despite these properties, we will show that the decentralized detector

can outperform the centralized one.
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2.4 Comparison of centralized and decentralized detection of

attacks

In this section we characterize the detection probabilities of the decentralized and

centralized detectors, and we derive sufficient conditions for each detector to outperform the

other. Recall that the decentralized detector triggers an alarm if any of the local detectors

detects an alarm. In other words,

PFd = Pr [Λi ≥ τi, for some i ∈ {1, . . . , N} |H0] ,

PDd = Pr [Λi ≥ τi, for some i ∈ {1, . . . , N} |H1] ,

(2.16)

where PFd and PDd denote the false alarm and detection probabilities of the decentralized

detector, respectively.

Lemma 6 (Performance of the decentralized detector) The false alarm and detection

probabilities in (2.16) satisfy

PFd = 1−
N∏
i=1

(
1− PFi

)
, and PDd = 1−

N∏
i=1

(
1− PDi

)
. (2.17)

A proof of Lemma 6 is postponed to the Appendix. As shown in Fig. 2.1, for the

case when PFi = PFj , for all i, j ∈ {1, . . . , N}, PFd increases with increase in PFi and N . To

allow for a fair comparison between the decentralized and centralized detectors, we assume

that PFc = PFd . Consequently, for a probability PFc , the probabilities PFi satisfy

PFc = 1−
N∏
i=1

(
1− PFi

)
.

We now derive a sufficient condition for the centralized detector to outperform the

decentralized detector.
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Figure 2.1: This figure shows the false alarm probability of the decentralized detector, PFd ,
as a function of the identical false alarm probabilities of the local detectors, PFi , for different
numbers of local detectors.

Theorem 7 (Sufficient condition for PDc ≥ PDd ) Let PFc = PFd , and assume that the

following condition is satisfied:

τc ≤ pc + λc −
√

4N(pc + 2λc) ln

(
1

1− PDmax

)
, (2.18)

where PDmax = max{PD1 , . . . , PDN }. Then, PDc ≥ PDd .

A proof of Theorem 7 is postponed to the Appendix. We next derive a sufficient

condition for the decentralized detector to outperform the centralized detector.

Theorem 8 (Sufficient condition for PDd ≥ PDc ) Let PFc = PFd , and assume that the

following condition is satisfied:

τc ≥ pc + λc +

√
4 (pc + 2λc) ln

(
1

1− (1− PDmin)N

)
+

+ 2 ln

(
1

1− (1− PDmin)N

)
,

(2.19)

where PDmin = min{PD1 , . . . , PDN }. Then PDd ≥ PDc .

A proof of Theorem 7 is postponed to the Appendix. Theorems 7 and 8 provide

sufficient conditions on the detectors and attack parameters that result in one detector
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outperforming the other. In particular, from (2.18) and (2.19) we note that, depending on

decision threshold τc, a centralized detector may or may not outperform a decentralized

detector. This is intuitive as the Q function, which quantifies the detection probability, is a

decreasing function of the detection threshold (see Remark 4). To clarify the effect of attack

and detection parameters on the performance trade-offs of the detectors, we now express

(2.18) and (2.19) using the mean and standard deviation of Λc in (2.12). Let

µc , E [Λc] = λc + pc, and σc , SD[Λc] =
√

2(pc + 2λc).

where the expectation and standard deviation (SD) of Λc follows from the fact that under

H1, Λc ∼ χ2(pc, λc) (see proof of Lemma 3). Hence, (2.18) and (2.19) can be rewritten,

respectively, as

τc ≤ µc − σc

√
2N ln

(
1

1− PDmax

)
︸ ︷︷ ︸

,κc

, and (2.20a)

τc ≥ µc + σc

√
2 ln

(
1

1− (1− PDmin)N

)
︸ ︷︷ ︸

,κd

+κ2
d. (2.20b)

From (2.20a) and (2.20b) we note that a centralized detector outperforms the decentralized

one if τc is κc standard deviations smaller than the mean µc. Instead, a decentralized

detector outperforms the centralized detector if τc is at least κd standard deviations larger

than the mean µc. See Fig. 2.2 for a graphical illustration of this interpretation. Theorems

7 and 8 are illustrated in Fig. 2.3 as a function of the non-centrality parameters. It can be

observed that (i) each of the detectors can outperform the other depending on the values of

the noncentrality parameter values, (ii) the provided bounds qualitatively capture the actual

performance of the centralized and decentralized detectors as the non-centrality parameters
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Figure 2.2: This figure shows the probability density function of Λc under H1, as a function
of threshold τc. For τc = µc − κcσc and τc = µc + κdσd + σ2

d, the shaded area in panels (a)
and (b) indicates the detection probability of the centralized detector. As seen in panels
(a) and (b), an increase in κc results in larger area (larger detection probability) while a
increase in κd results in smaller area (smaller detection probability).

increase, and (iii) the provided bounds are rather tight over a large range of non-centrality

parameters. In Fig. 2.4 we show that the difference of the detection probabilities of the

centralized and decentralized detectors can be large, especially when the non-centrality

parameters satisfy λc ≈ λi, as evident in Fig. 2.4 (a).

2.5 Design of optimal attacks

In this section we consider the problem of designing attacks that deteriorate the

performance of the interconnected system (2.1) while remaining undetected from the cen-

tralized and decentralized detectors. We measure the degradation induced by an attack

with the expected value of the deviation of the state trajectory from the origin. We assume

that the attack is a deterministic signal, and thus independent of the noise affecting the

system dynamics and measurements. In particular, for a fixed value of the probability PFc

21



0 100 200 300 400
0

100

200

300

400

500

0 100 200 300 400
0

100

200

300

400

500

Figure 2.3: This figure shows when the decentralized, which comprises identical local de-
tectors, and centralized detectors outperform their counterpart, as a function of the non-
centrality parameters. The regions identified by solid markers correspond to the conditions
in Theorems 7 and 8. Instead, regions identified by empty markers are identified numerically.
Since λi ≤ λc, the white region is not admissible. For PFc = PFd = 0.01, (a) corresponds to
N = 2 and (b) corresponds to the case of N = 4. When N = 4, the decentralized detector
outperforms the centralized one for a larger set of noncentrality parameters.

and a threshold PFc ≤ δc ≤ 1, we consider the optimization problem

(P.1) max
Ua

E

[
T∑
k=1

x(k)Tx(k)

]
,

subject to PDc ≤ δc,

x(k + 1) = Ax(k) +Baua(k) + w(k),

where Ua is the deterministic attack input over time horizon T (see (2.7)). Notice that,

because the attack is deterministic, the objective function in (P.1) can be simplified by

bringing the expectation inside the summation, and replacing the state equation constraint

with the mean state response. Further, because the system parameters and PFc are fixed, τc

and pc are also fixed, which ensures that PDd only depends on noncentrality parameter. This

observation along with the fact that Q(·) is increasing function in noncentrality parameter

(see Remark 4) allows us to express the detection constraint in terms of λc. Specifically,
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Figure 2.4: This figure shows the difference of the centralized and decentralized detection
probabilities as a function of λi for different values of λc. For small values of λc, the detection
probability of the decentralized detector can be very large than its centralized counterpart.

the optimization problem (P.1) can be rewritten as

(P.2) max
Ua

T∑
k=1

x(k)Tx(k)

subject to (Ua)TMc(U
a) ≤ δ̃c,

x(k + 1) = Ax(k) +Baua(k),

where we have used that Cov [x(k)] is independent of the attack ua(k), and

E[x(k)Tx(k)] = x(k)Tx(k) + Trace (Cov [x(k)]) ,

with x(k) = E[x(k)]. Further, we have δ̃c = Q−1
pc,τc(δc), where Q−1

pc,τc(α) : [0, 1] → [0,∞]

denotes the inverse of Q(τc; pc, λc) for fixed pc and τc, and λc = (Ua)TMc(U
a), with Mc

as in (2.15). It should be noticed that the attack constraint in (P.2) essentially limits the

energy of the attack signal. We next characterize the solution to the problem (P.2).
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Theorem 9 (Optimal attack vectors) Let U∗c be any solution of (P.2). Then, there

exist a γc > 0 such that the pair (U∗c , γc) solves the following optimality equations:

[
BTaBa − γcMc

]
U∗c + BTaAx(0) = 0, (2.21a)

(U∗c )TMc(U
∗
c ) = δ̃c, (2.21b)

where

A =


A

...

AT

 and Ba =


Ba · · · 0

...
. . .

...

AT−1Ba . . . Ba

 . (2.22)

A proof of Theorem 9 is postponed to the Appendix. Theorem 9 not only guar-

antees the existence of optimal attacks, but it also provides us with necessary conditions to

verify if an attack is (locally) optimal. When the system initial state is zero, we can also

quantify the performance degradation induced by an optimal attack. Let ρmax(A,B) and

νmax(A,B) denote a largest generalized eigenvalue of a matrix pair (A,B) and one of its

associated generalized eigenvectors [18].

Lemma 10 (System degradation with zero initial state) Let x(0) = 0. Then, the

optimal solution to (P.2) is

U∗c =

√ δ̃c
(ν∗)TMc(ν∗)

 ν∗, (2.23)

and its associated optimal cost is

J∗c = δ̃c ρmax

(
BTaBa,Mc

)
, (2.24)

where ν∗ = νmax

(
BTaBa,Mc

)
.
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A proof of Lemma 10 is postponed to the Appendix. From (2.24), note that the

system degradation caused by an optimal attack depends on the detector’s tolerance, as

measured by δ̃c, and the system dynamics, as measured by ρmax (·). See Remark 12 for the

influence of noise uncertainty on the system degradation due to optimal attacks.

Remark 11 (Optimal attack vector against decentralized detector) To character-

ize the performance degradation of the system analytically, we consider a relaxed form of

detection constraint. Specifically, we design optimal attacks subjected to P
D
d ≤ δd instead

of PDd ≤ δd, where P
D
d is an upper bound on PDd (see Lemma 14). The design of optimal

attacks that are undetectable from the decentralized detector can be formulated as:

(P.3) max
Ua

T∑
k=1

x(k)Tx(k)

subject to

N∑
i=1

(Uai )TMi(U
a
i ) ≤ δ̃d,

x(k + 1) = Ax(k) +Baua(k),

where the summation in the detectability constraint follows from Lemma 14 and the fact that

P
D
d ≤ δd becomes equivalent to

∑N
i=1 λi ≤ δ̃d, where δ̃d = Q−1

psum,τmin
(δd), psum =

∑N
i=1 pi,

and τmin = min
1≤i≤N

τi. Let Πi be a permutation matrix such that Uai = ΠiU
a, and let Π =[

ΠT
1 , . . . ,Π

T
N

]T
and Md = ΠTblkdiag(M1, . . . ,MN )Π. For any solution U∗d of (P.2), there

exist γd > 0 such that the pair (U∗d , γd) solves the following optimality equations:

[
BTaBa − γdMd

]
U∗d + BTaAx(0) = 0, and

(U∗d )TMd(U
∗
d ) = δ̃d.

Further, if x(0) = 0, then the largest degradation is J∗d = δ̃d ρmax

(
BTaBa,Md

)
. �
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Remark 12 (Maximum degradation of the system performance with respect to

system noise) To see the role of noise level, in the processed measurements, on the system

degradation, we consider the following covariance matrices: Σwi = σ2Ini and Σvi = σ2Iri,

for i ∈ {1, . . . , N}. Then, from (2.24) we have

J∗c = σ2 δ̃c

[
ρmax

(
BTaBa, M̃c

)]
, (2.25)

where M̃c =
(
NcF (a)

c

)T [
F (w)
c

(
F (w)
c

)T
+ I

]−1 (
NcF (a)

c

)
. From (2.25) we note that the

system degradation increases with the increase in the noise level, i.e., σ2. �

2.6 Numerical comparison of centralized and decentralized

detectors

In this section, we demonstrate our theoretical findings on the IEEE RTS-96 power

network model [32], which we partition into three subregions as shown in Fig. 2.5. We

followed the approach in [23] to obtain a linear time-invariant model of the power network,

and then discretized it using a sampling time of 0.01 seconds. For a false alarm probability

PFc = PFd = 0.05, we consider the family of attacks Ua =
√
θ/(1TMc1)1, where 1 is the

vector of all ones and θ > 0. It can be shown that the noncentrality parameters satisfy

λc = θ and λi = θ(1TMi1)/(1TMc1), and moreover, the choice of vector 1 is arbitrary and

it does not affecting the following results.

(Illustration of Theorem 7) For the measurement horizon of T = 100 seconds, the values of pc

and τc are 5130 and 5480.6, respectively. Fig. 2.6 show that the detection probabilities of the

centralized and decentralized detectors increase monotonically with the attack parameter
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Figure 2.5: The figure shows a single-line diagram of IEEE RTS-96 power network, which
is composed of three weakly-coupled areas (subsystems). The square nodes denote the
generators, while the circular nodes denotes the load buses of the network [23].

θ. As predicted by the condition (2.20a) and shown in Fig. 2.6, the centralized detector is

guaranteed to outperform the decentralized detector when θ > 173. This figure shows that

our result is conservative, because PDc ≥ PDd for all values of θ as shown in Fig. 2.6.

(Illustration of Theorem 8) Contrary to the previous example, by letting T = 125 seconds,

we obtain pc = 6755 and τc = 6947.3. For these parameters, the decentralized detector is

guaranteed to outperform the centralized one when θ ≤ 511. This behavior is predicted by

our sufficient condition (2.20b), and is illustrated in Fig. 2.6. The estimation provided by

our condition (2.20b) is conservative, as illustrated in Fig. 2.6.

(Illustration of Lemma 10) In Fig. 2.7 we compare the performance degradation induced

by the optimal attacks designed according to the optimization problems (P.2) and (P.3)

with zero initial conditions. In particular, we plot the optimal costs J∗c and J∗d against

the tolerance levels δ̃c and δ̃d, respectively. As expected, the performance degradation is

27



0 200 400 600
0

0.5

1

centralized detector

decentralized detector

(a)

0 200 400 600
0

0.5

1

centralized detector

decentralized detector

(b)

0 200 400 600
52

54

56

58

60
10

2

c
-

c c

c

(c)

0 200 400 600
64

66

68

70

10
2

c
+

d c
+

d

2

c

(d)

Figure 2.6: Scenarios in which the centralized detector outperforms the decentralized de-
tector (a), and vice versa (b), on the IEEE RTS-96 power network, for a range of attack
parameter (θ) values. In panels (c) and (d) we plot the right (solid line) and left hand ex-
pressions (dashed line) of the inequalities (2.20a) and (2.20b), respectively, as a function of
θ. For attacks such that the time horizon T = 100 sec and θ > 200, the sufficient condition
(2.20a) holds true, it guarantees that PDc ≥ PDd . Instead, when T = 125 sec and θ < 500,
the sufficient condition (2.20b) holds true, it guarantees that PDd ≥ PDc .
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Figure 2.7: This figure shows the performance degradation induced by undetectable optimal
attacks on the IEEE RTS-96 power network. The performance degradation is computed
using the optimal cost J∗c and J∗d derived in Lemma 10 and Remark 11, respectively. Instead,
the maximum detection probability is given by the tuning parameters δc and δd in the
detection probability constraints of the optimization problems (P.2) and (P.3), respectively.

proportional to the tolerance levels and, for the considered setup, it is larger in the case of

the decentralized detector.

2.7 Summary

In this work we compare the performance of centralized and decentralized schemes

for the detection of attacks in stochastic interconnected systems. In addition to quantifying

the performance of each detection scheme, we prove the counterintuitive result that the

decentralized scheme can, at times, outperform its centralized counterpart, and that this

behavior results due to the simple versus composite nature of the attack detection problem.

We illustrate our findings through academic examples and a case study based on the IEEE

RTS-96 power system.
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2.8 Appendix

Proof of Lemma 2: Since the attack vectors Uai and Ua are deterministic, and Wi, Vi, V ,

and W are zero mean random vectors, from the linearity of the expectation operator it

follows from (2.8) that

βi , E[Ỹi] = NiF (a)
i Uai , and βc , E[Ỹc] = NcF (a)

c Uac .

Further, from the properties of Cov[·], we have the following:

Σi , Cov
[
Ỹi

]
= NiCov [Yi]N

T
i

(a)
= Ni

[
Cov

[
F (w)
i Wi

]
+ Cov[Vi]

]
NT
i

(b)
= Ni

[(
F (w)
i

)
Cov [Wi]

(
F (w)
i

)T
+ Cov[Vi]

]
NT
i

= Ni

[(
F (w)
i

)
(IT ⊗ Σwi)

(
F (w)
i

)T
+ (IT ⊗ Σvi)

]
NT
i ,

where (a) follows because the measurement and process noises are independent of each

other. Instead, (b) is due to the fact that the noise vectors are independent and identically

distributed. Similar analysis also results in the expression of Σc, and hence the details are

omitted. Finally, by invoking the fact that linear transformations preserve Gaussianity, the

distribution of Ỹi and Ỹc is Gaussian as well. �

Proof of Lemma 3:

From the statistics and distributional form of Ỹi and Ỹc (see (2.9)), and threshold

tests defined in (2.11) and (2.12), it follows from [1, Theorem 3.3.3] that, under

1. H0: Λi ∼ χ2(pi) and Λc ∼ χ2(pc), where pi and pc are defined in (2.14).

2. H1: Λi ∼ χ2(pi, λi) and Λc ∼ χ2(pc, λc), where λi = βTi Σ−1
i βi and λc = βTc Σ−1

c βc.
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By substituting βi = NiF (a)
i Uai and βc = NcF (a)

c Uac (see Lemma 2) and rearranging the

terms, we get the expressions of λi and λc in (2.14). Finally, from the aforementioned

distributional forms of Λi and Λc, it now follows that the false alarm and the detection

probabilities of the tests (2.11) and (2.12) are the right tail probabilities (represented by

Q(·) function) of the central and noncentral chi-squared distributions, respectively. Hence,

the expressions in (2.13) follow. �

Proof of Lemma 5: Without loss of generality let i = 1. Thus, it suffices to show that a)

p1 ≤ pc and b) λ1 ≤ λc.

Case (a): For brevity, define

Σ̃i =

[(
F (w)
i

)
(IT ⊗ Σwi)

(
F (w)
i

)T
+ (IT ⊗ Σvi)

]
and

Σ̃c =

[(
F (w)
c

)
(IT ⊗ Σw)

(
F (w)
c

)T
+ (IT ⊗ Σv)

]
,

(2.26)

and note that Σ̃i > 0 and Σ̃c > 0. From Lemma 2, Lemma 3, and (2.26), we have

pc = Rank(Σc) = Rank

((
NcΣ̃

1/2
c

)(
NcΣ̃

1/2
c

)T)
= Rank

(
NcΣ̃

1/2
)

= Rank (Nc) .

Similarly, p1 = Rank (N1). Since, NT
1 and NT

c are a basis vectors of the null spaces NL
1 and

NL
c (see (2.37)) respectively, it follows from Proposition 13 that p1 ≤ pc.

Case (b): As the proof for this result is rather, we break it down in to multiple steps:

• Step 1 : Express λ1 and λc using the statistics of a permuted version of Yc.

• Step 2 : Obtain lower bound on λc, which depends on the statistics of the measure-

ments pertaining to Subsystem 1.
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• Step 3 : Show that λ1 is less than bound in Step 2.

Step 1 (alternative form of λ1 and λc): Notice that λ1 and λc in (2.14) can be expressed

as λ1 = βT1 Σ−1
1 β1 and λc = βTc Σ−1

c βc, respectively, where β1, βc, Σ1, and Σc are defined in

Lemma 2. For convenience, we express λ1 and λc in an alternative way. Let i ∈ {1, . . . , N}

and consider the i−th sensor measurements of (2.3)

yc,i(k) =

[
0 · · · Ci · · · 0

]
︸ ︷︷ ︸

,Cc,i

x(k) + vi(k). (2.27)

Also, define Yc,i =

[
yTc,i(1) . . . yTc,i(T )

]T
and Ŷc =

[
Y T
c,1 . . . Y T

c,N

]
. Now, from (2.27)

and state equation in (2.3), Yc,i can be expanded as

Yc,i = Oc,ix(0) + F (a)
c,i U

a + F (w)
c,i W + Vi,

where the matrices Oc,i, F (a)
c,i , and F (w)

c,i are similar to the matrices defined in Section II-A.

By substituting the above decomposition of Yc,i in Ŷ we have

Ŷc =


Oc,1

...

Oc,N


︸ ︷︷ ︸
Ôc

x(0) +


F (a)
c,1

...

F (a)
c,N


︸ ︷︷ ︸
F̂a

c

Ua +


F (w)
c,1

...

F (w)
c,N


︸ ︷︷ ︸
F̂w

c

W + V.

Moreover, from the distributional assumptions on W and V , it readily follows that (similarly

to the proof of Lemma 2),

Ŷc ∼ N
(
Ôcx(0) + F̂ac Ua,Σ

)
, (2.28)

where Σ =
(
F̂wc
)

(IT ⊗ Σw)
(
F̂wc
)T

+ (IT ⊗ Σv), and Σw and Σv are defined in Lemma 2.
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Now, consider the measurement equation yi(k) in (2.1) and note that Cc,ix(k) =

Cixi(k). Thus, yi(k) = yc,i(k), for all i ∈ {1, . . . , N} and k ∈ N. From this observation it

follows that Yi = Yc,i = ΠiŶc, where Πi is a selection matrix. Let Ñi = NiΠi and note that

ÑiÔ = NiOc,i. Further from Proposition 13 we have NiOc,i = 0. With these facts in place,

from Lemma 2 we now have

βi = ÑiF̂ac Ua and Σi = ÑiΣÑ
T
i . (2.29)

Similarly, since Ŷc is just a rearrangement of Yc (see (2.5)), there exists a permutation

matrix Q such that Yc = QŶc, and, ultimately Ỹc = NcYc = NcQŶc. Thus,

βc = NcQF̂ac Ua and Σc = NcQΣ(NcQ)T. (2.30)

Let z = F̂ac Ua. From (2.29) and (2.30) we have

λ1 = zTÑT
1

[
Ñ1ΣÑT

1

]−1
Ñ1z,

λc = zT (NcQ)T
[
(NcQ) Σ (NcQ)T

]−1
(NcQ) z.

(2.31)

Step 2 (lower bound on λc): Since, Yc = NcYc = NcQŶc, it follows that NcQ is the basis

of the null space Ôc. Further, the row vectors of Oc,i and Oc,j are linearly independent,

whenever i 6= j. Using these facts we can define Nc,i =

[
N i
c,i · · · NN

c,i

]
such that NcQ =[

NT
c,1 · · · NT

c,N

]T
, where N i

c,iOc,i = 0. Let P1 =

[
(Nc,2)T · · · (Nc,N )T

]T
and note that

(NcQ) Σ (NcQ)T =

Nc,1

P1

Σ

[
NT
c,1 PT

1

]
=

Nc,1ΣNT
c,1 Nc,1ΣPT

1

NT
c,1ΣP1 PT

1 ΣP1

 .
Let S1 = Nc,1ΣNT

c,1. Since Σ > 0, it follows that both the matrices S1 and PT
1 ΣP1 are
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invertible. Hence, from Schur’s complement, there exists a matrix X ≥ 0 such that

[
(NcQ) Σ (NcQ)T

]−1
=

S−1
1 0

0 0

+X. (2.32)

Similarly, consider the following partition of Σ:

Σ =

Σ11 Σ12

Σ21 Σ22

 ,
where Σ11 > 0 and Σ22 > 0, and let S2 = (N1

c,1)Σ11(N1
c,1)T. Invoking Schur’s complement,

we have the following:

S−1
1 =

S−1
2 0

0 0

+ Y, (2.33)

where Y ≥ 0. Substituting(2.32) and (2.33) in (2.31), it follows that

λc = zT(NcQ)T

S−1
1 0

0 0

 (NcQ)z + zT(NcQ)TX(NcQ)z︸ ︷︷ ︸
≥0

≥
[
(Nc,1z)

T (P1z)
T
]S−1

1 0

0 0


Nc,1z

P1z


= zT

(
NT
c,1S

−1
1 Nc,1

)
z

= zT(Nc,1)T

S−1
2 0

0 0

 (Nc,1)z + zT(Nc,1)TY (Nc,1)z︸ ︷︷ ︸
≥0

≥ zT(Nc,1)T

S−1
2 0

0 0

 (Nc,1)z = zT

(N1
c,1)TS−1

2 N1
c,1 0

0 0

 z. (2.34)
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Instead, λ1 in (2.31) can be shown as

λ1 = zT

NT
1

[
N1Σ11N

T
1

]−1
N1 0

0 0

 z, (2.35)

where we used the fact that Ñ1 = N1Π1.

Step 3 (λc ≥ λ1): For λc ≥ λ1 to hold true, it suffices to show the following:

(N1
c,1)TS−1

2 N1
c,1 ≥ NT

1

[
N1Σ11N

T
1

]−1
N1.

By invoking Proposition 13, we note that there exists a full row rank matrix F1, such that

N1 = F1N
1
c,1. Since FT

1 is a full column rank matrix, we can define an invertible matrix

F̃T
1 ,

[
FT

1 MT
1

]
, where M1 forms a basis for null space of F1, such that the following holds

S−1
2 = F̃T

1

[
F̃1S2F̃

T
1

]−1
F̃1 = F̃T

1

F1S2F
T
1 F1S2M

T
1

M1S2F
T
1 M1S2M

T
1


−1

F̃1.

By invoking Schur’s complement, it follows thatF1S2F
T
1 F1S2M

T
1

M1S2F
T
1 M1S2M

T
1


−1

=


(
F1S2F

T
1

)−1
0

0 0

+ Y,

where Z ≥ 0. Hence,

(N1
c,1)TS−1

2 N1
c,1 = (F̃1N

1
c,1)T


(
F1S2F

T
1

)−1
0

0 0

 (F̃1N
1
c,1) + (F̃1N

1
c,1)TZ(F̃1N

1
c,1).

By substituting F̃T
1 = [FT

1 MT
1 ] in the above expression, and rearranging the terms we have

(N1
c,1)TS−1

2 N1
c,1 = (F1N

1
c,1)T

(
F1S2F

T
1

)−1
(F1N

1
c,1) + (F̃1N

1
c,1)TZ(F̃1N

1
c,1).
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The required inequality follows by substituting S2 = (N1
c,1)Σ11(N1

c,1)T and N1 = F1Nc,1,

and recalling the fact that the sum of two positive semi definite matrices is greater than or

equal to either of the matrices. �

Proof of Lemma 6: Let Ei be an event that the i−th local detector decides H1 when the

true hypothesis is H0. Then, PFi = Pr [Ei] . Let E{i be the complement of Ei. Then, from

(2.16) it follows that

PFd = Pr

(
N⋃
i=i

Ei
)

= 1− Pr

(
N⋂
i=i

E{i

)
(a)
= 1−

N∏
i=1

Pr
(
E{i
)

= 1−
N∏
i=1

(1− Pr (Ei)) = 1−
N∏
i=1

(
1− PFi

)
,

where for the (a) we used the fact that the events Ei are mutually independent for all

i ∈ {1, . . . N}. To see this fact, notice that the event Ei is defined on Ỹi (see (2.8)). Further,

Ỹi depends only on the deterministic attack signal Uai and the noise vectors Vi and Wi,

but not on the interconnection signal Ui (see (2.6)). Now, by invoking the fact that noises

variables across different subsystems are independent, it also follows that the events Ei are

also mutually independent. Similar procedure will lead to the analogous expression for PDd

and hence, the details are omitted. �

Proof of Theorem 7: Let µc = pc+λc and σc =
√

2(pc + 2λc), and assume that (2.18) holds

true. Then, from the monotonicity property of the CDF associated with the test statistic

Λc, which follows χ2(pc, λc), we have the following inequality

Pr [Λc ≤ τc] ≤ Pr

[
Λc ≤ µc − σc

√
2N ln

(
1

1− PDmax

)]
.
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From the inequality (2.41b), it now follows that

Pr [Λc ≤ τc] ≤ exp

(
−N ln

(
1

1− PDmax

))
= exp

(
ln
(
1− PDmax

)N) ≤ N∏
i=1

(
1− PDi

)
,

where for the last inequality we used the fact that PDi ≤ PDmax for all i ∈ {1, . . . , N}. By

using the above inequality and Lemma 3, under hypothesis H1, we have

PDc = 1− Pr [Λc ≤ τc|H1] ≥ 1−
N∏
i=1

(
1− PDi

)
= PDd . �

Proof of Theorem 8: Let µc = pc+λc and σc =
√

2(pc + 2λc), and assume that (2.19) holds

true. Then, from the monotonicity property of the CDF associated with the test statistic

Λc, which follows χ2(pc, λc), we have the following inequality

Pr [Λc ≤ τc] ≥ Pr

[
Λc ≤ µc + σc

√
2 ln

(
1

1− (1− PDmin)N

)
+ 2 ln

(
1

1− (1− PDmin)N

)]
.

From the inequality (2.41a), it now follows that

Pr [Λc ≤ τc] ≥ 1− exp

(
− ln

(
1

1− (1− PDmin)N

))
= 1− exp

(
ln
(

1−
(
1− PDmin

)N)) ≥ N∏
i=1

(
1− PDi

)
= 1−

[
1−

N∏
i=1

(
1− PDi

)]
︸ ︷︷ ︸

PD
d

.

The result follows by substituting PDc = 1− Pr [Λc ≤ τc|H1] in the above inequality. �

Proof of Theorem 9 By recursively expanding the equality constraint of the optimization

problem (P.2) we have

[
x(1) · · · x(T )

]
= Ax(0) + BaUa. From this identity, (P.2) can

also be expressed as

max
Ua

[Ax(0) + BaUa]T [Ax(0) + BaUa]︸ ︷︷ ︸
f(Ua)

subject to (Ua)TMc(U
a) ≤ δ̃c.
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From the first-order necessary conditions [16] we now have

∇
(
f(U∗c )− γ(U∗c )TMc(U

∗
c )
)

= 0, (2.36a)

γ
(
δ̃c − (U∗c )TMc(U

∗
c )
)

= 0, (2.36b)

γ ≥ 0, (2.36c)

(U∗c )TMc(U
∗
c ) ≤ δ̃c, (2.36d)

where the gradient ∇ is with respect to Ua.

Case (i): Suppose (U∗c )TMc(U
∗
c ) < δ̃c. Then γ = 0 should hold true to ensure the com-

plementarity slackness condition (2.36b). Using these observations in the KKT conditions

we now have ∇f(U∗c ) = 0. Further, since, f(Ua) is a convex function of Ua, by evaluating

the second derivative of f(Ua) at U∗c , it can be easily seen that the obtained U∗c results in

minimum value of (P.2) rather than the maximum.Thus, for any U∗c of (P.2), the condition

(U∗c )TMc(U
∗
c ) < δ̃c cannot hold true.

Case (ii): Suppose (U∗c )TMc(U
∗
c ) = δ̃c. Then the KKT conditions can be simplified as:

∇
(
f(U∗c )− γ(U∗c )TMc(U

∗
c )
)

= 0,

(U∗c )TMc(U
∗
c ) = δ̃c.

The result follows by evaluating the derivative on the left hand side of the first equality. �

Proof of Lemma 10: By substituting x(0) = 0 in (2.21a), we note that any optimal attack

U∗c is of the form kν, where ν is the generalized eigenvector of the pair (BTaB,Mc) [18], and

the scalar k =

√
δ̃c/νTMcν is obtained from (2.21b). Let Jc be the optimal cost associated
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with an attack of the form U∗c = kν. Then,

Jc = (kν)TBTaBa(kν) = γ(kν)TMc(kν) = γδ̃c,

where the first equality follows from the fact that the objective function
∑T

k=1 x
T(k)x(k)

in (P.2) can be expressed as (U∗c )TBTaBa(U∗c ), and the second equality follows from (2.21a).

Since ν is a generalized eigenvector of the pair (BTaB,Mc), it follows that γ is the eigenvalue

corresponding to ν and hence, Jc is maximized when γ is maximum, which is obtained for

v = v?. The result follows since, γ = ρmax, for v = v?. �

Proposition 13 Let Oi F (u)
i be the observability and impulse response matrices defined in

(2.6). Define the matrices Oc,i =

[
(Cc,iA)T · · ·

(
Cc,iA

T
)T]T and Cc,i =

[
0 · · · Ci · · · 0

]
,

and the following left null spaces:

NL
i =

{
z : zT

[
Oi F (u)

i

]
= 0T

}
,NL

c,i =
{
z : zTOc,i = 0T

}
, and NL

c =
N⋃
i=1

NL
c,i. (2.37)

Then, NL
i ⊆ NL

c,i ⊆ NL
c , for all i ∈ {1, . . . , N}.

Proof. Without loss of generality, let i = 1. By definition, the set inclusion NL
c,1 ⊆ NL

c is

trivial. For the other inclusion, consider the system defined in (2.3) without the attack and

noise, i.e., x(k + 1) = Ax(k). Let x(k) =

[
xT1 (k) uT1 (k)

]T
, where x1(k) and u1(k) are the

state and the interconnection signal of Subsystem 1. Also, let

A =

A11 B1

B̃1 Ã11

 . (2.38)

Notice that, x(k + 1) = Ax(k) can be decomposed as

x1(k + 1) = A11x1(k) +B1u1(k),

u1(k + 1) = Ã11u1(k) + B̃1x1(k).

(2.39)
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By letting C̃1 =

[
C1A11 C1B1

]
and recursively expanding x1(k) using (2.39), we have

Cc,1A
kx(0) =

[
C1 0

]
AAk−1x(0) = C̃1A

k−1x(0)

= C̃1

x1(k − 1)

u1(k − 1)

 = C̃1

Ak−1
11 x1(0) +

∑k−2
j=0 A

k−2−j
11 B1u1(j)

u1(k − 1)


= C1A

k
11x1(0) +

k−1∑
j=0

C1A
k−1−j
11 B1u1(j), (2.40)

where the second, third, and fourth equalities follows from (2.38), system x(k+1) = Ax(k),

and (2.39), respectively. By recalling that Oc,1x(0) =

[
(Cc,1A)T · · ·

(
Cc,1A

T
)T]T x(0), it

follows from (2.40) that

Oc,1x(0) = O1x1(0) + F (u)
1

[
uT1 (0) · · · uT1 (T − 1)

]T
.

Let z be any vector such that zT
[
O1 F (u)

1

]
= 0T. Then, z also satisfies zTOc,1 = 0T.

Thus, NL
1 ⊆ NL

c,1.

Lemma 14 (Upper bound on PDd ) Let pi and λi be defined as in (2.14), and τi be

defined as in (2.11). Let psum =
∑N

i=1 pi, λsum =
∑N

i=1 λi, and τmin = min
1≤i≤N

τi. Then,

PDd ≤ Pr [Sd > τmin]︸ ︷︷ ︸
,P

D
d

, where Sd ∼ χ2(psum, λsum).

Proof. Consider the following events:

Vi =
{
Ỹ T
i Σ−1

i Ỹi ≥ τi
}

for all i ∈ {1, . . . , N}, and

V =

{
N∑
i=1

Ỹ T
i Σ−1

i Ỹi ≥ τmin

}
,

where the event Vi is associated with the i−th local detector’s threshold test. From the

definition of the above events, it is easy to note that
⋃N
i=1 Vi ⊆ V. By the monotonicity of
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the probability measures, it follows that

PDd , Pr

[
N⋃
i=1

Vi |H1

]
≤ Pr [V |H1] .

From the reproducibility property of the noncentral chi-squared distribution [36], it follows

that
∑N

i=1 Ỹ
T
i Σ−1

i Ỹi equals Sd in distribution and hence, Pr[V|H1] = Pr[Sd > τmin].

Lemma 15 (Exponential bounds on the tails of χ2(p, λ)) Let Y ∼ χ2(p, λ), µ = p+λ,

σ =
√

2(p+ 2λ). For all x > 0,

Pr
[
Y ≥ µ+ σ

√
2x+ 2x

]
≤ exp(−x) (2.41a)

Pr
[
Y ≤ µ− σ

√
2x
]
≤ exp(−x) (2.41b)

Proof. See [6].
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Chapter 3

A Probabilistic Approach to

Design Switching Attacks against

Interconnected Systems

3.1 Introduction

In this chapter, we study a security problem for interconnected systems, where the

objective of the attacker is to compromise the performance of the system by tampering with

the individual subsystems, while maintaining undetectability. In particular, we develop a

probabilistic rule to randomly select an attacked subsystem over time, and optimize over

the switching probabilities to maximize degradation and maintain undetectability from a

centralized detector. Overall, our results show that the ability to selectively compromise

different parts of a system over time greatly increases the severity of the attacks, thereby
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motivating the development of advanced detection schemes for interconnected system [2].

Main Contributions: This work features three main contributions. First, we develop an

attack model which randomly, through some pre-assigned probabilistic rule, compromise a

subsystem. Second, we characterize the detection probability of a centralized detector, with

respect to these attacks, and, derive upper bounds on the detection probabilities, both in

the finite and asymptotic cases. Third, we formulate and numerically solve an optimization

problem for computing optimal probabilistic rules with constraints on the detection prob-

ability. Finally, we demonstrate the superiority of using our optimal probabilistic strategy

against attacking fixed subsystem strategy on a real time example.

Related Work: In the last few years, with security emerging as a major concern for real

time dynamical systems, different attack models and possible remedial frameworks have

been studied by researchers to a great extent [49, 77, 76, 28, 61, 56]. Although, these works

provide deep insights into the attackers capabilities in compromising systems, several of

these works mainly restrict their attention to the attacks that target fixed subparts or the

overall system. Thereby undermining the vulnerabilities posed by the interconnected sys-

tems, at various subsystem and interconnection levels. However, only recently, researchers

started to study attack models in the context of interconnected systems, of which, the

switching attack locations model have received considerable attention. A few notable works

in this direction are as follows: Exploiting the sparsity structure in deterministic systems,

authors in [45] proposed dynamic decoders to estimate the initial state accurately. Instead,

for the stochastic systems, several authors proposed robust state estimation techniques

exploiting the tools from framework hidden mode switching systems and hidden Markov
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models [91, 39, 72]. Using the variable structure systems theory, authors in [47] demon-

strated switching attacks that can disrupt operation of power grid within a short period

of time. Instead, authors in [25] considered game-theoretic approach based power system

stabilizers to counter attack switching attacks in smart grids. Finally, authors in [88, 2]

studied the detrimental effects of switching and coordinated type of integrity attacks in

general cyber-physical systems.

3.2 Problem setup and preliminary notions

3.2.1 Nominal system model

We consider an interconnected system composed of N interacting subsystems

whose dynamics are as follows:

xi(k + 1) = Aiixi(k) +
N∑
j 6=i

Aijxj(k) + wi(k),

yi(k) = Cixi(k) + vi(k),

(3.1)

where xi ∈ Rni and yi ∈ Rmi is the state and measurements of the i-th subsystem, and

wi ∼Wi, vi ∼ N (0, Vi) are the process and measurement noise affecting the i-th subsystem

dynamics. Let n =
∑N

i=1 ni and m =
∑N

i=1mi. In the vector form, the dynamics read as

x(k + 1) = Ax(k) + w(k),

y(k) = Cx(k) + v(k),

(3.2)

where the state x, measurements y, and the noise vectors w and v of the interconnected

system are given by x =

[
xT1 . . . xTN

]T
, y =

[
yT1 . . . yTN

]T
, w =

[
wT

1 . . . wT
N

]T
∈
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Rn, and v =

[
vT1 . . . vTN

]T
∈ Rm. Further, the dynamical matrices A and C are given by

A =


A11 · · · A1N

...
. . .

...

AN1 · · · ANN

 and C =


C1 · · · 0

...
. . .

...

0 · · · CN

 ,

respectively. The initial state x(0) ∼ N (0,Σ0), the noises w ∼ N (0,W ) and v ∼ N (0, V ) are

uncorrelated, for all k ∈ N, where the noise covariance matrices areW , blkdiag (W1, · · · ,WN )

and V , blkdiag (V1, · · · , VN ).

We assume that (3.2) is operating in steady state and, we allow for the presence

of attackers that compromise the dynamics of the subsystems, and we model such attacks

as exogenous unknown inputs (see Section 3.2.2). We task an interconnected system with a

detector whose role is to trigger an alarm, based on the innovations signals generated by a

Kalman filter. Under the assumption that (C,A) is observable and (A,W ) is controllable,

a steady Kalman filter employs the following recursion:

x̂(k) = Ax̂(k − 1) +Kzk,

z(k) = y(k)− CAx̂(k − 1),

(3.3)

where x̂(k) , E[x(k)|y(0), . . . , y(k)] is the MMSE estimate of the state x(k), and the ma-

trices K , PCT [CPCT +V ]−1 and P , A(I −KC)PAT +W are the steady state Kalman

gain and the error covariance matrix, respectively. Further, the innovations z(k) ∼ N (0,Σ)

forms an i.i.d sequence with covariance Σ , CPCT + V .
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3.2.2 Objectives of attacker and attacked system model

We assume that the main objective of an attacker is to inject malicious inputs into

the system (3.2) with the following objectives:

1. at any given time, an attacker selects a subsystem, with a probabilistic rule, to inject

a malicious inputs and,

2. the rule used in (i) should maximize the state deviation of (3.2) from the origin, and,

should result in minimum detection probability.

Our motivation to consider this kind of objective stems from the following reasoning: often

in practice, attackers need to compromise systems with limited amount of resources and,

ingenuous attackers might look for some clever mechanisms to tamper systems such that

the degradation of system performance is worse even with the limited resources.

Let {ak}∞k=0 be a scalar valued i.i.d stochastic process, where ak takes value in

the finite set {1, . . . , N}, at every time k ∈ N, with probability P[ak = i] , pi, for all

i ∈ {1, . . . , N}, such that
∑N

i=1 pi = 1. Let p , [p1, . . . , pN ]T, and note that p denotes the

probabilities of selecting subsystems. Thus, by specifying p, the attack process {ak}∞k=0,

realizes a subsystem index, for any given time k. Let δi(ak) be a indicator random variable

of ak, i.e., δi(ak) = 1 if ak = 1, else δi(ak) = 0 otherwise. Let δ(ak) , [δ1(ak), . . . , δN (ak)]
T.

Then, the attacked system dynamics can be modeled as

xe(k + 1) = Axe(k) + w(k) + Π(k)δ(ak),

ye(k) = Cxe(k) + v(k) + Ψ(k)δ(ak),

(3.4)

where, xe(k) and ye(k) denote the state and the measurement of the system under attack.

The attack matrices are Π , blkdiag (Π1u1, . . . ,ΠNuN ) and Ψ , blkdiag (Ψ1ũ1, . . . ,ΨN ũN ),
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respectively, where Πiui(k) and Ψiũ(k) are the malicious inputs that an attacker wants to

inject into the i−th subsystem at time k. Further, we assume that the process {ak}∞k=0 is

independent of w(k) and v(k). Thus it follows that the random variables δ(ak), w(k), and

v(k) are mutually independent, for all k ∈ N. Let PD(k) be the detection probability of a

detector. Then, the attacker’s objective can be casted as a following optimization problem:

(P.1) arg max
p

E

[
T−1∑
k=0

xe(k + 1)Txe(k + 1)

]
,

subject to p ≥ 0, (3.5)

1Tp = 1, and (3.6)

PD(k) ≤ ζ ∀k ∈ {0, . . . , T − 1}, (3.7)

where the expectation E[·] is taken over the noise variables and the process {ak}T−1
k=0 . We

make the following assumption for an attacker to design an optimal probabilistic rule.

Assumption 16 The attacker has complete information about the matrices of the system

(3.2) and of the Kalman filter (3.3).

3.2.3 Relation between nominal and attacked system

In this section we characterize the bias accumulated in the interconnected system

dynamics (3.2) and the Kalman filter dynamics (3.3) due to the attacks. Let γ(k) and β(k)

denote the bias in the state and the measurements of (3.2), respectively. Then, xe(k) =

x(k) + γ(k) and ye(k) = y(k) + β(k), where

γ(k + 1) = Aγ(k) + Π(k)δ(ak),

β(k) = Cγ(k) + Ψ(k)δ(ak).

(3.8)

47



To compute the bias in the state estimate and innovations, we consider the follow-

ing filter under attacks

x̂e(k) = Ax̂e(k − 1) +Kze(k),

ze(k) = ye(k)− CAx̂e(k − 1),

(3.9)

where x̂ek and zek are analogous to the state estimate and the innovations defined in (3.3).

Let x̂e(k) = x̂(k) +α(k+ 1) and ze(k) = z(k) + ε(k). Then the biases α(k) and ε(k) can be

obtained from the following linear system:

α(k + 1) = (I −KC)Aα(k) +Kβ(k),

ε(k) = C [γ(k)−Aα(k)] + Ψ(k)δ(ak),

(3.10)

Notice that in the absence of attacks, the bias ε(k) = 0, and ze(k) = z(k) for all

k ∈ N. Instead, in the presence of attacks, the bias ε(k) 6= 0 and ze(k) 6= z(k) (at least for

one k). Based on this observation, in the following section we develop a procedure that will

be employed by a detector to decide against the attacks.

3.3 Detection framework

Let H0 and H1 be the null and the alternative hypothesis corresponding to the

presence and absence of attacks, respectively. The attack detection problem can be casted

using the following hypothesis testing framework:

H0 (attack absent) :E [ze(k)] = 0,

H1 (attack present) :E [ze(k)] 6= 0.

We assume that the detector uses a chi-squared test statistic [54, 15], which is a

quadratic transformation of the innovations ze(k), to compare with a threshold and decide
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against the attacks. Formally, we have the following test procedure for all k ∈ N:

Λ(k) , ze(k)TΣ−1ze(k)
H1

≷
H0

τ, (3.11)

where τ is a suitable threshold. The false alarm probability (PF ) and the detection proba-

bility (PD) of the test (3.11) are defined in the following way:

PF (k) , P [Λ(k) ≥ τ |H0] and PD(k) , P [Λ(k) ≥ τ |H1] .

We assume that PF (k) is identical for all k ∈ N and, thus we omit its dependence on

time and refer to it as PF . Now, by recalling that under the null hypothesis H0 the bias

ε(k) = 0, we have ze(k) ∼ N (0,Σ). It follows that Λ(k) ∼ χ2(m), where m is the degrees

of freedom. Further, we assume that PF is predetermined and the threshold τ is computed

by the inverse CDF of χ2(m).

3.3.1 Characterization of the detection probability

Notice that the detector cannot compute the detection probability PD(k), as it

does not know the bias ε(k) accumulated in the innovations ze(k). Although, this is a limi-

tation of the detector, it is not very beneficial to an attacker either, since, if the magnitude

of attack input is large, larger is the bias ε(k), greater the test statistic Λ(k), and hence

easier for the attack to satisfy (3.11). Instead, in order to inject attacks that can evade the

detector, i.e., bypass the threshold test (3.11), the attacker needs to know PD(k). In this

section we derive an expression for PD(k), which helps attacker decide what type of attacks

to be casted on the interconnected system. We now state a proposition that expresses the

bias ε(k) in terms of attack inputs until time k, for all k ∈ N.
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Proposition 17 Let A = A (I −KC) and B(k) = Π(k)−AKΨ(k). Then

ε(k) =

[
CAk−1B(0) . . . CB(k − 1) Ψ(k)

]
︸ ︷︷ ︸

,Ek


δ(a0)

...

δ(ak)


︸ ︷︷ ︸
,δ(a0:k)

. (3.12)

Proof. See the Appendix.

We now introduce the following notation that will be useful for characterizing

detection probability PD(k). Consider the truncation {aj}kj=0 of the actual attack process

{aj}∞j=0. Let Sk be the set of all possible realizations of {aj}kj=0, and πk be an element of

Sk, where the components of πk can be enumerated as [π0
k, π

1
k . . . , π

k
k ]. With slight abuse of

notation we define δ(πk) , [δ1(π0
k)

T, . . . , δN (πkk)T]T. To avoid confusion, we emphasize that

δ(a0:k) is a random vector but δ(πk) is a deterministic (realized) vector.

Lemma 18 (Detection probability) The detection probability of the test statistic (3.11)

is given by

PD(k) =
∑
πk∈Sk

Q(τ ;m,λ(πk))pπ0
k
pπ1

k
· · · pπk

k
, (3.13)

where Q(τ ; r, λ(πk)) is the complementary CDF of χ2(τ, λ(πk)), λ(πk) , δ̃(πk)TETk Σ−1Ekδ̃(πk).

Proof. See the Appendix.

For the attacks that randomly select a subsystem, Lemma 18, states that the

PD(k) is a weighted sum of detection probability, i.e., Q(τ ;m,λ(πk)), associated with all

possible ways of selecting the locations. Moreover, for a given k, these weights are nothing

but the binomial coefficients of the expansion (p1 + . . . + pN )k. Finally, notice that the
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expression (3.13) depends on the matrices of the interconnected system and the KF through

the impulse response Ek in (3.12) of λ(πk) = δ̃(πk)
TETk Σ−1Ekδ̃(πk). Hence, the following

assumption ensures that an attacker has the capability to compute PD(k) for k ∈ N.

3.3.2 Upper bound on the detection probability

Although the formula of PD(k) we obtained in Lemma 18 is exact, the number

of summands in (3.13) increases exponentially with time k. Hence, for practical purposes,

computing the detection probability using (3.13) is not efficient. In this section we provide

an upper bound on PD(k) using Markov’s inequality. We now define the following matrices

that will be helpful in expressing our bound compactly:

ETk Σ−1Ek ,



Lk(0, 0) Lk(0, 1) · · · Lk(0, k)

Lk(1, 0) Lk(1, 1) · · · Lk(1, k)

...
...

. . .
...

Lk(k, 0) Lk(k, 1) . . . Lk(k, k)


, (3.14)

where Lk(i, j), 0 ≤ i, j ≤ k is obtained by performing block wise multiplication of matrices

in ETk with those in Σ−1Ek. Moreover, this construction results in Lk(i, j) = Lk(j, i)
T, for

all i, j. Further, define Lk and L̂k as

Lk ,
∑
i=j

Lk(i, j) and L̂k ,
∑
i 6=j

Lk(i, j), (3.15)

respectively. Further, Lk is a positive semi definite matrix, while L̂k is a symmetric matrix.

Lemma 19 (Upper bound of the detection probability) Let p , [p1, p2, . . . , pN ]T be

the vector of probabilities with pi denoting the probability of attacking an i−th subsystem,
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∀i ∈ {1, . . . , N}. Then, for all k ∈ N, it holds that

PD(k) ≤ m+ diag(Lk)
Tp+ pTL̂kp

τ︸ ︷︷ ︸
P

D
(k)

. (3.16)

Proof. See the Appendix.

Notice that, unlike the expression in (3.13), the upper bound P
D

(k) is a quadratic

expression in the probability vector p. Further, P
D

(k) dose not depend on the Q function,

which is an infinite series. Rather it depends directly on the impulse response (3.12) through

the matrices Lk and L̂k. Finally, we note that the bound (3.16) becomes loose if the

threshold τ is not sufficiently large, or equivalently, for the higher values of PF .

3.3.3 Asymptotic upper bound

In this section we aim to provide an asymptotic expression for the bound P
D

(k)

when k →∞. For this purpose, we assume that the attack matrices are constant for all the

times, i.e., Π(k) , Π and Ψ(k) , Ψ for all k ∈ N.

Lemma 20 (Asymptotic upper bound of the detection probability) Let P
D

(k) be

as in (3.16). Then,

P
D
∞ , lim

k→∞
PD(k) =

m+ diag(L∞)Tp+ pTL̂∞p

τ
.

where L∞ = BTOB + ΨTΣ−1Ψ, L̂∞ = BT [O −M]B − ΨΣ−1Ψ, B = Π − AKΨ, O ,∑∞
j=0(Aj)TCTΣ−1CAj, and M , (I −A)−TCTC(I −A)−1.

Proof. See the Appendix.
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As PD(k) ≤ PD(k), for all k ∈ N, from the above Lemma we can observe that for

large k, the upper bound of detection probability is constant. Intuitively, what it means

is that, if the attacker is not detected during the transience period of the filter (3.3), since

the beginning of attacks, then it is unlikely for an attacker to be detected once the filter

(3.3) reaches the steady state. Finally, if the attack matrices Π and Ψ are chosen such

that the constraint (3.19), i.e., PD(k) ≤ ζ for k ∈ {0, . . . , T0 − 1}, where T is sufficiently

large, the Lemma 20 guarantees that PD(k) ≤ ζ, for all times k ∈ N. Thus, this type of

asymptotic analysis helps an attacker to carefully chose the attack matrices a priori that

yields minimum detection probability.

3.4 Design of an optimal probabilistic strategy

In this section we solve the optimization problem (P.1) described in Section 3.2

with the help of numerical optimization techniques. First, we rewrite the cost function

of (P.1) in such way that it depends explicitly on the variable p. Under Assumption ??,

consider the following impulse response matrices associated with the system (3.8):

HT−1 ,



Π 0 · · · 0

AΠ Π · · · 0

...
...

. . .
...

AT−1Π AT−2Π . . . Π


and
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HT
T−1HT−1 ,


G(0, 0) · · · G(0, T − 1)

...
. . .

...

G(T − 1, 0) . . . G(T − 1, T − 1)

 , (3.17)

and let

GT−1 ,
∑
i=j

G(i, j) and ĜT−1 ,
∑
i 6=j

G(i, j). (3.18)

By construction, GT−1 is a positive definite matrix, while ĜT−1 is a symmetric matrix. The

following proposition express the cost function of (P.1) in terms of GT−1 and ĜT−1.

Proposition 21 The cost function of (P.1) is equivalent to diag(GT−1)Tp+ pTĜT−1p.

Proof. See the Appendix.

As PD(k) is inefficient for computational purposes we relax the constraint (3.7)

of (P.1) by replacing it with constraint on the upper bound P
D

(k). By incorporating

the aforementioned changes in (P.1) we now have the following quadratically constrained

quadratic programming type problem, whose solution yields a sub-optimal probabilistic

attack strategy, with respect to the original problem (P.1).

(P.2) arg max
p

diag(GT−1)Tp+ pTĜT−1p,

subject to 1Tp = 1, p ≥ 0

p ≥ 0,

diag(Lk)
Tp+ pTL̂kp ≤ τ ζ −m

∀k ∈ {0, . . . , T − 1} (3.19)
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Notice that (P.2) is a non-convex optimization problem, since the matrices L̂k, for

all k ∈ 0, . . . , T − 1, and ĜT−1 are only symmetric matrices. Thus, the standard convex

optimization techniques/analysis cannot be applicable. Hence, to obtain a feasible solution

to the maximization problem (P.2) we use standard numerical solvers. We also note that

this optimal solution might not be a global maximum.

3.4.1 Numerical Example

We consider a chemical reactor consisting of two continuous stirred-tank reactors

[35]. The discretized system matrices, with sampling time Ts = 1, are given by

A11 =

0.2603 −0.1862

0.1862 0.2603

 , A12 =

−0.0188 −0.0230

0.0232 −0.00188

 ,

A21 =

−0.0215 −0.0266

0.0263 −0.0215

 , A12 =

−0.3120 0.2713

−0.2713 −0.3120

 .
We consider the state and measurement attack matrices as

Π = Ψ =

1 1 0 0

0 0 1 1


T

.

Our results are illustrated in Fig. 3.1 and Fig. 3.2. For the probabilistic rule

p = [0.5, 0.5]T and PF = 0.01, in Fig. 3.1 we report the actual detection probability PD(k)

(3.13) and the upper bound PD(k), for a given system and Kalman filter. As discussed in

Section 3.3, we can see that the bound (3.16) converges to a constant when T increases. In

Fig. 3.2 we report the values of the cost function (P.2) for the optimal probabilistic rule

p = p∗ and the fixed location rule, i.e., the degenerate probability vectors p = [1, 0]T and
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Figure 3.1: This figure shows the detection probability as a function of time. The black solid
corresponds to the detection probability evaluated using (3.13). The dashed orange line is
obtained using the upper bound (3.16). For the PF = 0.01, degrees of freedom m = 4, and
the attack matrices Π and Ψ, we notice that although there is an initial transience, due to
the dynamics of Kalman filter, as discussed in Section 3.3, the actual value and the bound
converges to a constant.

p = [0, 1]T, respectively. From Fig. 3.2 and as expected, the optimal rule results in higher

degradation of the system performance. This work shows that the use of probabilistic rule

for switching location attacks benefits attacker, as opposed to attacking fixed locations. As

seen in the formulation of (P.2), one can see that, the optimal probabilistic rule depends

on the subsystem dynamics, interconnection signals, and the choice of attack matrices. We

leave these characterizations for our future research.
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Figure 3.2: This figure shows the performance degradation of interconnected systems, eval-
uated by the cost function value of (P.2), for various subsystem selecting rules. The blue
solid line correspond to the cost function associated with optimal probabilistic rule, that
was obtained by solving (P.2) using numerical solver. The dashed orange (resp. dotted
green) is obtained by using fixed attack locations. As expected the cost function values
for all the rules increase with time horizon. In particular, the optimal probabilistic rule
resulted in worst performance degradation than the rest.

3.5 Summary

This paper studies a security problem for interconnected systems, where the at-

tacker objective is to randomly compromise subsystems, such that the performance degrada-

tion of interconnected system is maximum. We developed a probabilistic rule for attacking

subsystems and characterized the bias accumulated in the system due to these attacks. We

also characterized the detection probability of a centralized detector, and formulated an

optimization problem to find an optimum probabilistic rule that maximizes system degra-

dation, while maintaining minimum detection probability.
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3.6 Appendix

Proof of Proposition 17: Let θ(k) , γ(k)−Aα(k), then from (3.8) and (3.10) it follows that

θ(k + 1) = γ(k + 1)−Aα(k + 1)

= Aγ(k) + Π(k)δ(ak)−A(I −KC)Aα(k)−AKβ(k)

= A [γ(k)−Aα(k)]−AKC [γ(k)−Aα(k)] + Π(k)u(k)−AKΨ(k)u(k)

= A (I −KC)︸ ︷︷ ︸
,A

θ(k) + [Π(k)−AKΨ(k)]︸ ︷︷ ︸
,B(k)

δ(ak)

Now, from (3.10), ε(k) can be easily computed by using the following linear system

θ(k + 1) = Aθ(k) + B(k)δ(ak)

ε(k) = Cθ(k) + Ψ(k)δ(ak)

The result follows by recursively expanding θ(k) and observing that θ(0) = 0, since γ(0) =

0 and α(0) = 0. �

Proof of Lemma 18: For any k ∈ N, let I{Λ(k)≥τ} be the indicator function of the event

{Λ(k) ≥ τ}. Then, by using the iterated expectations formula we have

PD(k) = P [Λ(k) > τ |H1] = E
[
I{Λ(k)≥τ}|H1

]
= E

[
E
[
I{Λ(k)≥τ} |H1, δ(a0:k)

]
|H1

]
, (3.20)

where the outer expectation is with respect to the truncated process a0:k , {aj}kj=0. Let

δ̃(πk) be a realization of δ(a0:k), where πk = [π0
k, . . . , π

k
k ]T. Then, under the hypothesis H1,

we note that ε(k) = Ekδ̃(πk) is a deterministic quantity and further it follows that

ze(k)|
H1,δ(a0:k)=δ̃(πk)

∼ N (ε(k),Σ).

Now, from the definition of noncentral chi-squared distribution, we also have

Λ(k) |
H1,δ(a0:k)=δ̃(πk)

∼ χ2(m,λ(πk)),
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Thus, from the above characterizations and the fact that conditional expectation of an

indicator function is equal to the conditional probability, we conclude that

E
[
I{Λ(k)≥τ} |H1, δ(a0:k) = δ̃(πk)

]
= Q(τ ;m,λ(πk)),

Substituting above expression in (3.20), and taking the expectation over all realizations of

a0:k yields us the following:

PD(k) =
∑
πk∈Sk

Q(τ ;m,λ(πk))P(a0:k = πk) (3.21)

Since, the attack process {ak}∞k=0 is i.i.d it follows that P(a0:k = πk) =
∏k
j=0 P

(
aj = πjk

)
=∏k

j=0 pπj
k
. By substituting above expression in (3.21) the statement of Lemma follows. �

Proof of Lemma 19: From the definition of PD(k) we have

PD(k) = P[(ze(k))TΣ−1ze(k)︸ ︷︷ ︸
Λ(k)

≥ τ |H1].

As Λ(k) ≥ 0, from Markov’s inequality it follows that

P[(ze(k))TΣ−1ze(k) ≥ τ |H1] ≤ E
[
(ze(k))TΣ−1ze(k)|H1

]
τ︸ ︷︷ ︸

P
D

(k)

.

Notice that under hypothesis H1, ze(k) = z(k) + ε(k) and, from Proposition 17, ε(k) =

Ekδ(a0:k) 6= 0. As the process {ak}∞k=0 is independent of noise random variables affecting

the system dynamics, it also follows that z(k) and δ(a0:k) are independent, and we have

E
[
(ze(k))TΣ−1ze(k)

]
= E[z(k)TΣ−1z(k) + 2z(k)TΣ−1ε(k) + ε(k)TΣ−1ε(k)]

(a)
= E[z(k)TΣ−1z(k) + ε(k)TΣ−1ε(k)], (3.22)
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where (a) follows because z(k) is independent of ε(k) and E[z(k)] = 0. Now, consider,

E[z(k)TΣ−1z(k)] = Tr
(
E[z(k)TΣ−1z(k)

)
= Tr

(
Σ−1E[z(k)z(k)T]

)
= Tr

(
Σ−1Σ

)
= m (3.23)

where the last equality follows because the innovations z(k) and the measurements y(k) has

the same dimension. Before simplifying the second term of (3.22) we note that

E
[
δa0:kδ

T
a0:k

]
=


E[δ(a0)δ(a0)T] . . . E[δ(a0)δ(ak)

T]

...
. . .

...

E[δ(ak)δ(a0)T] . . . E[δ(ak)δ(ak)
T]

 =



diag(p) ppT . . . ppT

ppT diag(p) . . . ppT

...
...

. . .
...

ppT ppT . . . diag(p)


,

(3.24)

where the second equality follows because the process {ak}∞k=0 is i.i.d and E[δ(ak)] = p, for

all k ∈ N. Further, p = [p1, . . . , pN ]T and, with slight abuse of notation, we denote diag(p)

as the diagonal matrix with diagonal elements as components of p. Consider the following:

E[ε(k)TΣ−1ε(k)] = Tr
(

Σ−1E[ε(k)ε(k)T]
)

= Tr
(

Σ−1E[Ekδ(a0:k)δ(a0:k)
TETk ]

)
= Tr

(
ETk Σ−1EkE[δa0:kδ

T
a0:k

]
)

By invoking (3.14) and (3.24) in the above expression, and, followed by block multiplication

of entries in ETk Σ−1Ek and E[δa0:kδ
T
a0:k

] we can see that

E[ε(k)TΣ−1ε(k)] = Tr
(
Lkdiag(p)

)
+ Tr

(
L̂kpp

T
)

= pTdiag(Lk) + pTL̂kp (3.25)

By substituting (3.23) and (3.25) in PD(k), the statement of Lemma follows. �

Proof of Lemma 20: From (3.16) we note the following:

lim
k→∞

P
D

(k) =
m+ lim

k→∞
diag(Lk)

Tp+ lim
k→∞

pTL̂kp

τ
(3.26)

60



Under Assumption ?? and from (3.15) it follows that

Lk =

k−1∑
j=0

B(j)T(Aj)TCTΣ−1CAjB(j) + Ψ(k)TΣ−1Ψ(k),

=

k−1∑
j=0

BT(Aj)TCTΣ−1CAjB + ΨTΣ−1Ψ,

Since A = A(I −KC) is stable, we note that lim
k→∞

∑k−1
j=0(Aj)TCTΣ−1CAj exists. Thus

L∞ , lim
k→∞

Lk = BTOB + ΨTΣ−1Ψ (3.27)

Now, let Ek ,
∑k−1

j=0 CAjB and note that lim
k→∞

Ek = lim
k→∞

∑k−1
j=0 CAjB = C(I − A)−1B,

where the last equality because A is a stable matrix. Moreover, a straightforward compu-

tation results in L̂(k) = ET
k Ek − Lk. By taking limits on both sides we have

L∞ , lim
k→∞

L̂k = lim
k→∞

(
ET
k Ek − Lk

)
= BT (I −A)−TCTC(I −A)−1︸ ︷︷ ︸

,M

B − L∞ = BT [O −M]B −ΨΣ−1Ψ (3.28)

Now, by substituting (3.27), and (3.28) in (3.26) it follows that

P
D
∞ , lim

k→∞
P
D

(k) =
m+ diag(L∞)Tp+ pTL̂∞p

τ
. �

Proof of Proposition 21: Recall that xe(k) = x(k)+γ(k), E[x(0)] = 0 and x(k) is independent

of γ(k), for all k ∈ N. Hence,

E

[
T−1∑
k=0

xe(k + 1)xe(k + 1)

]
=

T−1∑
k=0

E [x(k + 1)x(k + 1)] + E [γ(k + 1)γ(k + 1)]

As the first term does not depend on the optimization variable p, for purpose of optimization,

we can treat it as a constant. Instead, from (3.8) and (3.17) it follows that

T−1∑
k=0

γ(k + 1)Tγ(k + 1) = δ(a0:T−1)THT
T−1HT−1δ(a0:T−1)
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Now, by taking the expectation on both sides of the above equation and following the same

procedure as we did in Proof of Lemma 19 (for analyzing E[ε(k)TΣ−1ε(k)]), the statement

of Proposition follows. �
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Chapter 4

Network Theoretic Analysis of

Maximum a Posteriori Detectors

for Optimal Sensor Placement

In this chapter we consider a sensor placement problem using the input-output

properties of the network dynamics [67, 89, 68, 51]. In contrast to the existing works,

which primarily focused on either estimating or reconstructing the network dynamics, in

this work, we formulate the placement problem from a detection theoretic view point. In

particular, we are concerned with detecting statistical abnormalities in a local stochastic

input to a network, using a detector that only relies on the remote time-course measurements

of the network dynamics. The basic idea is that the network topological structure enforce

relationships between signals at different locations in the network, which means that changes

to the dynamics at one location can potentially be detected using measurement signatures at
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other locations in the network. Our analysis leads to the interesting results that, depending

on the network weights and structure, and the intensity of sensor noise, the detection

performance may improve as the graphical distance between the input nodes and the sensors

location increases. In fact, our results (i) inform the optimal positioning of sensors for the

detection of failure of system components or malicious tampering modeled by unknown

stochastic inputs, (ii) allow the detection of unexpected modification of the system structure,

because such changes would modify the original detection profile, and (iii) provide network

design guidelines to facilitate or prevent measurability of certain network signals.

Main Contributions: We briefly summarize our main contributions as follows. First, we

consider a binary hypothesis testing problem for a discrete time Gaussian process driving

the linear network dynamics through certain network nodes. We primarily consider the

scenario where hypothesis on either the mean or the covariance of the input process must be

detected using the measurements (possibly corrupted with white Gaussian noise) collected

from nodes (referred as to output nodes) that are at least at a specified distance apart from

the input nodes. We characterize the maximum a posteriori (MAP) detector, and quantify

its performance as a function of input-output transfer function matrix gain of the network

system. These results are significant in their own rights. In fact, in cyber-physical security

literature, there are only limited works related to detecting changes in the covariance of the

input, modeled as attacks, and our results contributes to this area as well.

Second, we study the MAP detector’s performance as a function of the sensors

locations. In particular, in the absence of noise, regardless of the network structure and

edge weights, we show that the performance of the detector associated with a set of sensors
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forming a cut of the network (nodes on the cut shall be referred as to cutset nodes) is as

good as the performance obtained by measuring all nodes of the subnetwork identified by

the cut and not containing the nodes affected by the input nodes (referred as partitioned set

nodes). Conversely, in the presence of noise, depending upon the internal transfer function

matrix gain between the cutset nodes and the partitioned nodes, we show that the detection

performance of sensors on the cutset nodes may be better or worse than those of sensors

on the partitioned nodes. Finally, we demonstrate our theoretical findings on Toeplitz line

networks and some illustrative numerical examples.

Related Work: As the optimal sensor placement problem belongs to the class of combina-

torial optimization problem, several research communities focused on developing heuristic

algorithms and convex relaxation methods [86, 37, 38, 57, 20]. The computational complex-

ity of selecting minimum input and output sets for achieving controllability and observability

has been addressed by the authors in [93, 60, 63], and the authors in [60, 81] showed that

these are NP-hard problems. A significant amount of work has also been devoted to the

observability of linear systems from a graph theoretic view point [17, 12, 50]. In recent

years, there is also an incipient research effort to optimize some useful Grammian based

metrics in order to ensure the controllability (and dually, observability) [75, 62, 96, 82].

Finally, we also notice the current advancements in partial control of network’s dynamics,

which are refereed under the names as target controllability or reachability [85, 82].
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4.1 Preliminaries and problem setup

Consider a network represented by the digraph G := (V, E), where V := {1, . . . , n}

and E ⊆ V × V are the node and edge sets. Let gij ∈ R be the weight assigned to the

edge (i, j) ∈ E , and define the weighted adjacency matrix of G as G := [gij ], where gij = 0

whenever (i, j) /∈ E . Let K := {k1, . . . , kr} ⊆ V be the set of input nodes, which receive r

inputs. Let w(i, j) denote a path on G from node i to j, and let |w(i, j)| be the number of

edges of w(i, j). Define the distance between input node set K and a set of nodes S ⊆ V as

dist(K,S) := min{|w(i, j)| : i ∈ K, j ∈ S}. We associate to each node i a state xi ∈ R, and

let the network evolve with discrete linear dynamics

x[k + 1] = Gx[k] + Πw[k], (4.1)

where x = [x1 · · ·xn]T ∈ Rn contains the states of the nodes at time k ∈ N, x[0] ∼ N (0,Σ0)

is the initial state, and w[k] ∈ Rr is the input vector. The input matrix Π = [ek1 , . . . , ekr ]

indicates the location of the input nodes. Let the input w[k] be governed by one of the

following two competing statistical hypotheses:

H1 : w[k]
i.i.d∼ N (µ1,Σ1) , k = 0, 1, . . . , N,

H2 : w[k]
i.i.d∼ N (µ2,Σ2) , k = 0, 1, . . . , N,

(4.2)

where the moments µi ∈ Rr and Σi ∈ Rr×r(� 0), i ∈ {1, 2}, are completely known. In other

words, the competing hypotheses are simple. However, the true hypothesis is assumed to be

unknown. We are concerned with detecting the true hypothesis on the input signal, using

measurements from the sensors that are not collocated with the input nodes.

We assume that the nodes J := {j1, . . . , jm} ⊆ V are accessible for sensor place-

ment (one sensor for each node), if dist(K,J ) ≥ d, where d ∈ N. We refer to J as the
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sensor set. The output of these sensors is given by

yJ [k] = Cx[k] + v[k], (4.3)

where C = [ej1 , . . . , ejm ]T and v[k] ∼ N (0, σ2
vI). Let the process {x[0],w[0],v[0],w[1],v[1], . . .}

be uncorrelated. To detect the true hypothesis, we task sensors with a detector, which maps

the following time aggregated measurements

YT
J =

[
yT
J [1] yT

J [2] · · ·yT
J [N ]

]
, (4.4)

to a detected hypothesis Ĥ. We will consider the maximum a posteriori probability (MAP)

detector, which is given by the following decision rule:

Pr({H2 is true}|YJ )
Ĥ=H2

≷
Ĥ=H1

Pr({H1 is true}|YJ ). (4.5)

For a predetermined set of input nodes K, the focus of our analysis is to characterize the

performance of the detector (4.5), in terms of the network’s adjacency matrix G. The

performance of the detector (4.5) is measured by its error probability, which is given by

Pe(J ) =
∑

i∈{1,2}

Pr(Ĥ 6= Hi|{Hi is true})πi. (4.6)

where πi = Pr({Hi is true}) is the prior probability.

For any sensor set J that statisifes dist(K,J ) ≥ d, one expects that the MAP

detector’s performance (4.6) is maximum when dist(K,J ) = d. However, for certain net-

work configurations, studies have shown that the gain of transfer function, which is closely

related to the signal-to-noise ratio (SNR) of a detector, is maximum when the input and

output nodes are farther apart [79]. Hence, it remains unclear whether the closeness of the

sensors to the input nodes improves the performance of the detector.
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cutset nodes: {4, 5, 6}

Figure 4.1: Illustration of network partitions induced by a node cutset.

In this paper, we show that the graphical proximity indeed modulate the MAP

detector’s performance, for certain classes of the detection problems (4.2). In particular,

we characterize networks for which the detection performance obtained when sensors are

located on a node cutset is better (or worse) than the performance obtained when sensors

are placed on nodes of the subnetwork induced by the node cutset that does not contain the

input nodes (precise statements are provided in Section 4.3). See Fig 4.1 for an illustration

of node cutset and the subnetwork (partitioned nodes) induced by it. Throughout the paper,

we will distinguish the performance of sensors with measurement noise σ2
v = 0 and without

noise σ2
v > 0. The essential reason, as we will show later, is that only in the presence of

noise, we have a scenario where the performance of a MAP detector associated with the

cutset nodes may be worse than that of the partitioned nodes. We end this section with an

example that shows the impact of noise on the detection performance.

Example 22 Let Hi : w[k] ∼ N (µi, σ
2) and y[k] = αw[k]+v[k], where α is the tuning
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parameter and v(k)∼N (0, σ2
v). For πi = 0.5, the MAP detector’s error probability, based

on N samples of y, is 0.5QN (0.5 η). Here η2 =N(µ1−µ2)2/(σ2 +α−2σ2
v) denotes the SNR,

and QN (0.5 η) is decreasing in η. For σ2
v = 0, the error probability does not depend on α,

and is lesser than the case where σ2 > 0. However, when σ2
v > 0, QN (·) depends on α. In

particular, when α is small, QN (·) is high, and vice versa. Thus, in the presence of noise,

the error probability can be reduced by properly tuning α. �

Remark 23 (Non-testable hypotheses and zero dynamics) The hypothesis testing

framework considered in this paper may not applicable to the situations such as the system

(4.1) associated with the measurement model (4.3) has zero dynamics, i.e., YJ [k] = 0 for

non-zero input or, some components of the input gets canceled in the operation of Cx[k].

However, in the latter case, our framework can modified to analyze the input signals that

lies in the low dimensional subspace. �

4.2 Detection performance of the MAP detector

In this section, we derive the algebraic expressions of the MAP decision rules and

their error probabilities for two special cases of the hypotheses in (4.2). The first case is the

mean shift model, in which the covariance matrices in (4.2) are equal, but the mean vectors

are different. The second case is the covariance shift model in which the mean vectors in

(4.2) are equal, but the covariance matrices are different. For this latter case, we will rely

on the LD-MAP detector (see below) for deciding the hypothesis. The reason for working

with these models is twofold: (i) the error probability expressions are analytically tractable,

and (ii) these models are widely used for detection and classification problems that arise
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in practice [80, 70]. The probability expressions we derive in this section will be used for

the network analysis of the MAP detector’s performance (details in Section 4.3). Finally, it

should be noted that, although we deal with two detection frameworks, all our results will

be stated in common theorem environment, i.e., we don’t state our results for mean and

covariance shift models separately (for instance, see Lemma 27).

Definition 24 (Linear discriminant function-based MAP detector: LD-MAP) A

LD-MAP detector is as in (4.5) with YJ (4.4) replaced by the discriminant y = bTYJ ,

where the vector 1 b ∈ RmN is the maximizer of the information divergence criterion:

I=π1E
[

ln
fH1(y)

fH2(y)

∣∣∣∣H1

]
+π2E

[
ln
fH2(y)

fH1(y)

∣∣∣∣H2

]
, (4.7)

where fHi(y) is the density of y given Hi and I > 0.

Remark 25 (Optimal discriminant vector) For any arbitrary vector b, the I-divergence

measure (4.7) indicates how well a LD-MAP detector is performing in deciding between H1

and H2. Thus by maximizing (4.7), we are finding an optimal detector among the class of

LD-MAP detectors parameterized by b [70]. �

We now state a lemma that provides us with the algebraic expressions of the MAP

detectors associated with the mean and covariance shift models.

Proposition 26 (Mean and covariance of YJ ) Let YJ and Hi be defined as in (4.4)

and (4.2), resp. Then,

µi,E[YJ |Hi]=F (1N ⊗ µi) and

Σi,Cov[YJ |Hi]=OΣ0OT + F (IN ⊗ Σi)FT + σ2
vI,

(4.8)

1In the literature of pattern recognition and communications, b is commonly referred as to the Fisher’s
discriminant and optimal SINR beam former, respectively [24, 8].

70



where, the observability and impulse response matrices are

O=



CG

CG2

...

CGN


and F=



CΠ 0 . . . 0

CGΠ CΠ . . . 0

...
...

. . .
...

CGN−1Π CGN−2Π . . . CΠ


.

Lemma 27 (MAP detectors) Let π1 and π2 be non-zero priors, and define γ = ln(π1/π2).

Let YJ be as in (4.4), and let (µi,Σi) and (µi,Σi) be as in (4.2) and (4.8), resp.

1. The MAP detector associated with the mean shift model (Σ1 = Σ2 but µ1 6= µ2) is

given by:

(
2µT

∆Σ
−1
c

)
YJ

Ĥ=H2

≷
Ĥ=H1

2γ + µT
∆Σ
−1
c (µ1 + µ2) , (4.9)

where µ∆ = µ2 − µ1 and Σc , Σ1 = Σ1.

2. The LD-MAP detector associated with the covariance shift model (Σ1 6= Σ2 but µ1 =

µ2) is given by:

ln

(
d1

d2

)
− 2γ

Ĥ=H2

≷
Ĥ=H1

(y − bTµc)
2

[
1

d2
− 1

d1

]
, (4.10)

where y = bTYJ , di = bTΣib, and µc , µ1 = µ2.

The detectors (4.9) and (4.10) are functions of the sufficient statistics 2µT
∆Σ
−1
c YJ

and y − bTµc, respectively. This means that, given these statistics, other information in

YJ is not needed for deciding between H1 and H2. In order to characterize the error

probabilities of the detectors in Lemma 27, we make the following assumption:

Assumption 28 The LTI system (4.1) is stable. Further,
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1. for the mean shift model, limN→∞N‖µ2 − µ1‖2 = c, where 0 < c < ∞, and Gk = 0

for some k ∈ N, and

2. for the covariance shift model, Σ1 � 0 and Σ2 = 0.

Lemma 29 (Error probability: infinite horizon) Let π1 = π2 = 0.5 and x[0] = 0. Let

T (z) = C(zI −G)−1Π, where z /∈ spec(G). The error probability of the MAP detector (4.9)

and the LD-MAP detector (4.10) as N →∞ are

Pem(J )=0.5QN (0.5 η) and (4.11)

Pev(J )=0.5
[
1−Qχ2 (1, τ)

]
+ 0.5Qχ2 (1, τR) , (4.12)

respectively, where τ = lnR/(R− 1). The SNRs are

η2 = N µ̃T
∆

(
[LTL+ σ2

vI]−1LTL
)
µ̃∆ and (4.13)

R = 1 + σ−2
v ‖T (z)Σ

1
2
1 ‖2∞, (4.14)

where L = T (1)Σ
1
2
c and µ̃∆ = Σ

− 1
2

c [µ2 − µ1], and Σ
1
2
c and Σ

1
2
1 are the positive square roots

of Σc and Σ1, respectively.

The assumptions πi = 0.5 and x[0] = 0 are for the ease of presentation, and the

probability expressions can be easily adjusted to include other priors and initial conditions.

The assumption N‖µ2 − µ1‖2 → c ensures that Pem(J ) < 0.5. Instead, the assumption

Gk = 0 is to eliminate the remainder terms in the computation of η. We emphasize that

the only restriction on k is that it should be finite, but can be arbitrarily large. We now

state a corollary to the above lemma in which we do not assume Σ2 = 0 in the covariance

shift model (see Remark 32).
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Corollary 30 (SNRs: identical input statistics) Let Hi in (4.2) be w[k] ∼ N (µi1, σ
2
iD),

where µi and σ2
i are scalars, and D > 0. For the covariance shift model let σ2

1 > σ2
2. Then,

η2
s =

(
Nµ2

∆

)
1T[σ2

cL
TL+ σ2

vI]−1LTL1, (4.15)

Rs =
σ2

1‖T (z)D
1
2 ‖∞ + σ2

v

σ2
2‖T (z)D

1
2 ‖∞ + σ2

v

, (4.16)

where µc = µi, σc = σi, L = T (1)D
1
2 , and µ∆ = µ2 − µ1.

The error probabilities for the identical statistics case can be obtained by substi-

tuting ηs and Rs to η and R in (4.11) and (4.12), respectively. The effect of sensor noise

is also evident from the SNR expressions in the above corollary. In particular, by setting

σ2
v = 0 in (4.15) and (4.16), the probabilities do not depend on the network matrix G.

Notice that the expressions of Pem(J ) and Pem(J ) in above lemma are valid even

when N is finite. However, in this case, η and R are complicated functions of the adjacency

matrix G. Instead, the elegance of SNRs in Lemma 29 and Corollary 30 is that they depend

on the adjacency matrix G through the well understood transfer matrix T (z). Thus, when

N → ∞, one can easily understand the impact of network structure on the detection

performance by analyzing T (z). By interpreting the quadratic function in η (or ηs) and

‖ · ||∞ in R (or Rs) as a measure of gain, one expects that higher gains results in minimum

error probabilities. This intuition is made precise in the following proposition:

Proposition 31 Pem(J ) and Pev(J ) are decreasing in η (or ηs) and R (or Rs), resp.

The above proposition also helps us to compare the performance of the MAP

detectors associated with different sensor sets. This fact will be exploited greatly in the

next section on network analysis of the MAP detector’s performance.
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Remark 32 (LD-MAP detector’s error probability for other covariance matrix

structures) We now comment on extending Pev(J ) (4.12) for including other covariance

matrices. The case Σ1 = 0 and Σ2 > 0 can be handled using the proof of Lemma 29. For

the scenario where neither of Σ1 or Σ2 is zero, if we have N < ∞ and λmax(Σ1Σ
−1
2 ) >

λmin(Σ1Σ
−1
2 ), then Pev(J ) remains the same as in (4.12), with R = λmax(Σ1Σ

−1
2 ). For

other cases we refer the reader to [70]. However, the main difficulty in analyzing any

of these error probabilities lies in the fact that resulting expressions of SNRs (R) are not

amenable to analysis. If one assumes Σ1 and Σ2 to be simultaneously diagonalizable, as is

the case with Corollary 30, an expression of R similar to (4.16) may be obtained. �

4.3 Network analysis of the MAP detector

In this section, we characterize networks for which the MAP detector’s performance

associated with the sensors that are close to the input nodes is better (or worse) than those

of sensors that are farther apart. We distinguish two separate cases when the sensors are

without noise (σ2
v > 0) and with noise (σ2

v = 0). To make the notion of closeness precise,

we introduce the notion of a node cutset.

Definition 33 (Node cutset) For the graph G = (V, E) with input nodes K, the nodes

Cd ⊆ V, with d > 1, form a node cutset if there exist a non empty source set S ⊆ V and a

partitioned set P ⊆ V such that V = S t Cd t P, where t denotes the disjoint union, and

(i) K ⊆ S and dist(K, Cd) ≥ d, and

(ii) every path from S to P contains a node in Cd.
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The requirement (i) ensures that the node cutset is at least d edges away from the

input nodes. To illustrate Definition 33, consider the network in Fig 4.1. For the input nodes

K = {1, 2}, the nodes C1 = {4, 5, 6} forms a node cutset. However, the nodes {5, 6, 7} ceases

to form a node cutset, since they failed to satisfy requirement (ii) in the above definition.

Assumption 34 Given a graph G, the input node set K and the distance d is predetermined.

We are now ready to state our results on network theoretic characterization of the

MAP detectors. It should be noted that, if a result holds true for the general detection

problem (4.2), we do not state the analogous result for the mean and covariance shift models.

We begin with the case of noiseless measurements (σ2
v = 0).

Theorem 35 (Performance of sensors on the node cutset vs the partitioned set:

noiseless measurements) Consider the general detection problem (4.2). Let Cd and P

be as in Definition 33, and assume that the measurements from both these node sets are

noiseless (σ2
v = 0). Associated with these measurements, let Pe (Cd) and Pe (P) be the

respective error probabilities that are computed using (4.6). Then, Pe (Cd) ≤ Pe (P).

This above theorem is a consequence of the following result in the binary detection

problem, known as theorem of irrelevance [87] and the invariance of MAP rule [52].

Lemma 36 (Error probability of the MAP detector: dependent measurements)

Let M1 and M2 be any two arbitrary simple hypotheses with non-zero priors. Let δ1 be the

error probability of a MAP detector relying on the measurement Y ∈ Rp1, and δ2 be such a

quantity associated with the measurement Z = g(Y) + v, where g(.) : Rp1 → Rp2 and v is

stochastically independent of the hypotheses. Then, δ1 ≤ δ2.
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From Lemma 36, it also follows that Theorem 35 holds true even (i) for the case

of non-Gaussian input and measurements (provided that the joint density exists), and (ii)

if the set P is replaced with P ∪C̃d, where C̃d ⊆ Cd. Theorem 35 implies that, in the absence

of noise, nodes near the input location achieve better detection performance compared to

those far away from the inputs, irrespective of the edge weights in the adjacency matrix G

and the measurement horizon N . Here, the notion of closeness is to be understood in the

sense of node cutsets, since, d ≤ dist(K, Cd) < dist(K,P). Thus, if node cutsets exist in a

graph and the measurements are noiseless, one should always place sensors on the cutsets.

Thus, if a budget is associated with the sensor placement, it makes sense to find a cutset

Cd of minimum cardinality.

Proposition 37 (Error probability of the oracle detector) Consider the general de-

tection problem (4.2), and let δ1 be the error probability of a MAP detector which can directly

access the inputs w[k], k = 0, . . . , N . For any sensor set J , let δ2 and δ3 be the error prob-

abilities associated with the noiseless (σ2
v = 0) and noisy (σ2

v > 0) measurements YJ (4.4),

respectively. Then, δ1 ≤ δ2 ≤ δ3.

Proposition 37 states that sensor noise degrades the performance of the MAP

detector (this fact is also illustrated in Example 22). It also implies that measuring the

inputs directly is always better than measuring the noisy/noiseless states (dynamics) of the

nodes. Of course, given this fact, it is always beneficial to place the sensors at the input

nodes, rather than dealing with the node cutsets and the partitioned sets.

We now consider the case of noisy measurements (σ2
v > 0). Notice that our

results will be specific to the MAP and LD-MAP detectors associated with the mean and
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covariance shift models, respectively. Possible extensions to the general detection problem

(4.2) are briefly mentioned in the remarks. We now introduce some additional notation.

For a cutset Cd, let xc[k], xs[k], and xp[k] denote the states of the node sets Cd, S, and P,

respectively. Let M be a permutation matrix such that x[k] = M [xs[k]T,xc[k]T,xp[k]T]T,

where x[k] is the state vector of (4.1). Then, from (4.1) it also follows that
xs[k + 1]

xc[k + 1]

xp[k + 1]

=


Gss Gsc 0

Gcs Gcc Gcp

0 Gpc Gpp


︸ ︷︷ ︸

M−1GM


xs[k]

xc[k]

xp[k]

+


ws[k]

0

0


︸ ︷︷ ︸
M−1Πw[k]

. (4.17)

From the above relation, note that the states of Cd serve as an input for the states of

partitioned nodes set P, i.e.,

xp[k + 1] = Gppxp[k] +Gpcxc[k]. (4.18)

Based on the transfer function matrix of subsystem (4.18), we now state a result

that is analogous to Theorem 35, for the case σ2
v > 0.

Theorem 38 (Performance of sensors on the node cutset vs the partitioned set:

noisy measurements) Let Gpp and Gpc be as in (4.17), and assume that spec(Gpp)∩{z ∈

C : |z| = 1} = φ. Let ρ(z) and ρ(z) be the maximum and minimum singular values of

Ts(z) = (zI − Gpp)
−1Gpc, respectively. Let Pem(Cd) in (4.11) and Pev(Cd) in (4.12) be

the error probabilities obtained using the noisy measurements (σ2
v > 0) from the cutset Cd.

Instead, let Pem(P) and Pev(P) be the error probabilities associated with the partitioned set

P. Then we have:

1a) If ρ(1) ≤ 1, then Pem(Cd)≤Pem(P).
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1b) If ρ(1) > 1, then Pem(Cd)>Pem(P).

2a) If sup|z|=1 ρ(z) ≤ 1 then Pev(Cd)≤Pev(P).

2b) If inf |z|=1 ρ(z) > 1, then Pev(Cd)>Pev(P).

Hence, in the presence of noise, depending upon the entries in the matrix [GppGpc],

measuring the cutset Cd might not be always optimal for the purposes of the detection.

Instead, in the noiseless case, Theorem 35 states that measuring the cutset is always optimal,

irrespective of the entries inG. We now explain the reason behind this contrasting behaviors.

Notice that, the quantities sup and inf of ρ(z) and ρ(z) in Theorem 38, respectively,

are the maximum and minimum input to output gains of the transfer function matrix Ts(z),

associated with the system (4.18). Theorem 38 says that, if the gain between the states xc[k]

and the states xp[k] is high (low), the detection performance with sensors in P should be

better (worse) that that of Cd. In fact, recall from Lemma 29 that the detectors associated

with the noisy measurements of Cd and P, respectively, depends on the SNRs of xc[k] and

xc[k] (plus the sensor noise), respectively. Since xp[z] = Ts(z)xc[z], it is clear that the SNRs

are influenced by the gains of Ts(z). In particular, a higher gain increases the SNR of the

detector associated with P, which results in a better performance compared to the detector

associated with that of Cd.

The above reasoning also holds in the case of noiseless measurements, however,

the transfer function gain do not influence MAP detector’s performance. In fact, this gain

gets canceled in the error probability computations (this can be clearly seen in Example 22

by interpreting α as the gain). Theorem 38 provides conditions for placing sensors on or

away from the cutset nodes. For general adjacency matrix, one needs to rely on the software
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(based on LMI based inequalities) to validate those conditions. However, for non-negative

adjacency matrices, the conditions for placing (or not) sensors on the cutset nodes can be

stated based on algebraic conditions on the entries of the adjacency matrix. In fact, we

have the following result:

Lemma 39 (Non-negative adjacency matrix) Let the matrix G in (4.1) be non-negative,

and G̃ = [GppGpc] ∈ Rm1×n1, where Gpp and Gpc are defined in (4.18).

1. If ‖G̃‖∞≤1/
√
m1, then we have Pem(Cd)≤Pem(P) and Pev(Cd)≤Pev(P).

2. If n1 = 1, and all row sums of G̃ are greater than one, then Pem(Cd)≥ Pem(P̃) and

Pev(Cd)≥Pev(P̃), where P̃ ⊆ P.

The inequality Pem(Cd)≤Pem(P) can be obtained even without the non-negativity

assumption on G. However, this might not be true for the case of Pev(·). Thus, by ensuring

that the maximum row sum of G̃ is bounded by 1/
√
m1 (here m1 refers to the cardinality

of the partitioned set P), one can guarantee that the detection performance of sensors

on the cutset is always superior than that of the sensors on the partitioned nodes. The

assumption n1 = 1 in part 2) of above lemma implies that card(Cd) = 1. For arbitrary n1,

the condition row sums of G̃ greater than one may not be sufficient, and more assumptions

on G are required to handle this case. For instance, when G is a diagonally dominant matrix,

required sufficient conditions can be obtained using the lower bounds in [83]. Finally, we

notice that the bounds presented in Lemma 39 depends on the cardinality of the node sets,

and hence, our results on networks with non-negative edge weights may be conservative

when these cardinalities are large.
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Remark 40 (Extension of network theoretic results to the other detectors: noisy

measurements) In the cases where the analytical error probability calculation is difficult,

eg., the general Gaussian or non-Gaussian detection problem and the covariance shift model

with arbitrary covariance matrix structures, one relies on the Chernoff type bounds (for eg.,

see [80]) to quantify the detection performance. In both the cases, i.e., evaluating the per-

formance directly or via bounds, Theorem 38 holds true for any detector whose performance

(resp. bounds) is monotonically increasing in ‖T (z) = C(zI −G)−1Π‖M , for some suitable

M � 0. For instance, the Chernoff bounds on the error probability of the general Gaussian

detection problem (4.2) depend on the moment generating function (MGF) of the test statis-

tic of the MAP detector, which depends on the filtered mean and covariance matrices (4.8),

and our analysis becomes applicable. In the non-Gaussian case, the MGF might depend on

other moments as well, and extending our results to this case will be challenging. �

4.3.1 Single input single output (SISO) line networks

In this section, we validate our cutset based results, that we present in previous

section, for the case of line networks by explicitly expressing the error probabilities as a

function of the entires of G, and then compare the performance of sensors on Cd versus

sensors on P. We restrict our attention to the SISO systems.

We assume that a stochastic input enters the network through a fixed node q ∈

{1, . . . , n}, and we allow any node l ∈ {1, . . . , n} with dist(l, q) ≥ d for sensor placement.

For this setup, we assume that probabilities Pem(l) and Pev(l) are obtained by substituting

the SNRs ηs (4.15) and Rs (4.16) in the expressions of (4.11) and (4.12), respectively. Notice

that, in contrast to the previous analysis, in which we assume Σ2 = 0 (see Assumption 28),
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Figure 4.2: Toeplitz line network with n nodes. The q-th node is injected with the input,
and the j-th node represents the cutset node.

in this section we do not assume σ2
2 = 0 in Rs. For the ease of presentation, we assume

the cutset to be a singleton set, i.e., Cd = {j}. The following proposition is an extension of

Lemma 39 for our SISO system setup with the revised error probabilities.

Proposition 41 Let G̃ be as in Lemma 39, and σ2
v > 0. Let {j} and P be the cutset and

partitioned sets, resp. If ‖G̃‖∞ ≤ 1, then for any j1 ∈ P, we have Pem(j)≤ Pem(j1) and

Pev(j)≤ Pev(j1). The opposite inequality holds true if all row sums of G̃ are greater than

one.

The proof of above proposition is similar to the proof of Lemma 39 and hence, the

details are omitted. By not resorting to any proof techniques, i.e, the functional dependence

arguments, that we used in previous section, we now validate assertions in above proposition

by expressing the error probability in terms of the entries in the matrix G. To this aim,

we consider a line network (see Fig. 4.2), whose adjacency matrix is given by the following
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matrix:

G =



a b 0 · · · 0 0

c a b · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · a b

0 0 0 · · · c a


n×n

, (4.19)

where, a, b, c ∈ R≥0. We let the cutset node j be located on the right of the input node

q, i.e., 1 ≤ q < j < n (see Fig 4.2). The case when j is to the left side of the input node

q follows similar analysis. Thus, we have the partitioned set P = {j + 1, . . . , n}. We now

show that, for any l ∈ P, the error probabilities Pem(l) and Pev(l) are greater or smaller

than those of the cutset node j. The following proposition helps us achieve the required

goal:

Proposition 42 Let G be as in (4.19) and λ(G) < 1. Let |(I −G)−1
l,q | be the absolute value

of (l, q)-th entry of (I −G)−1. Let G̃ be as in Lemma 39. Then, we have:

i) If ‖G̃‖∞ < 1, then |(I −G)−1
q,q | ≥ |(I −G)−1

q+1,q| · · · ≥ |(I −G)−1
n,q|.

ii) If all row sums of G̃ are greater than one, then |(I − G)−1
lq | ≥ |(I − G)−1

qq | for all

q < l ≤ n. If b = 0, we have |(I −G)−1
q+1,q| ≥ |(I −G)−1

q+2,q| · · · ≥ |(I −G)−1
n,q|.

For a fixed input q, above proposition characterizes the qualitative behavior of the

input-to-output transfer function gains associated with different output nodes. This fact

can be easily seen by expressing |(I − G)−1
lq | as |eTl (I − G)−1eq|. For the case of Toeplitz

line networks, the assertion in Proposition 41 is now an easy consequence of Proposition 31
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Figure 4.3: The graph of a network consisting of 10 nodes. The nodes that are to the right
of the cutset node {3} form the partitioned set. Instead, nodes 1 and 2 form the source set.

and 42. In particular, if b = 0 and a+c > 1, Proposition 42 also implies that, the node that

is farthest from the input has better detection performance than any other node, including

the cutset node. Similarly, assertion in Theorem 35 can be verified by letting σ2
v = 0.

The procedure illustrated above, evaluating the error probabilities via the entries

of (I −G)−1, becomes tedious and might not be even possible for arbitrary network struc-

tures. In such situations, one can use the proof techniques presented in Section 4.3 for

understanding the detection performance of sensors on networks.

4.4 Simulation results

In this section, we present numerical simulations to validate the effectiveness of

our cutset based characterization of MAP detection performance on networks.

(A. Detection performance of sensors on the partitioned nodes is better than that

of the sensors on the cutset nodes): For this scenario, consider the network in Fig 4.3. The

network has 10 nodes, with 1 and 2 being the input nodes, Cd = {3} is the cutset node,
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Figure 4.4: Actual and asymptotic error probabilities (Lemma 29) of the MAP and LD-
MAP detectors associated with various nodes of the network shown in Fig. 4.3. The panels
(a) and (b) corresponds to the adjacency matrix that results in the shorter memory of
the network dynamics (3.2). Instead, panels (c) and (d) are associated with an adjacency
matrix that results in the longer memory of the network dynamics. The error probability
associated with each node in the partitioned set P = {4, . . . , 10} is less than that of the
cutset node Cd = {3}. This result is consistent with Lemma 39, because all row sums of
submatrix G̃ are greater than one.

and P = {4, . . . , 10} is the partitioned node set. The adjacency matrix of this network is

nilpotent, and as a result, system (4.1) evolving on this network will have a short memory

(in fact G10 = 0). By short (resp. long) memory, we mean that the current state of the

network depends on few (resp. several) past states. For the mean shift model, the input

wi[k] ∼ N (µi1, σ
2
i I2×2), where µ1 = 2, µ2 = 1, and σ2

2 = σ2
2 = 1.5. Instead, for the

covariance shift model, the input2 wi[k] ∼ N (0, σ2
i I2×2), where σ2

1 = 2.0 and σ2
2 = 1.0. In

both the models, N = 200 and the sensor noise variance σ2
v = 1.2.

2the choice of zero mean is arbitrary, since, the LD-MAP detector’s error probability do not depend on
the mean; see Lemma 29.
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Fig. 4.4(a) and Fig. 4.4(b) illustrates the actual and asymptotic error probabilities

of the mean and covariance shift models, respectively. The error probabilities are computed

using the formulas in Lemma 29. In particular, for the asymptotic case, we use the SNRs

in Corollary 30. In both figures, the error probability associated with the cutset node is

greater than that of any node in the partitioned set. This must be the case since G ≥ 0,

and the row sums of the submatrix G̃ are greater than one (see Lemma 39).

The error between the asymptotic and actual error probabilities in Fig. 4.4(a) and

Fig. 4.4(b) is almost negligible, even when N is not large. This is because the adjacency

matrix G is a nilpotent matrix, and as a result, the difference between the actual and

asymptotic SNRs is minimum. However, this might not be the case when G has long

memory, i.e., Gk ≈ 0 only for a very large k. For N = 800, Fig. 4.4(c) and Fig. 4.4(d)

illustrate this scenario for the network that is obtained by modifying some edges of the

network in Fig. 4.3, such that Gk ≈ 0 for very large k.

(B. Detection performance of sensors on the cutset nodes is better than that of the

sensors on the partitioned nodes): Consider the network shown in Fig 4.5. The network

has 50 nodes among which K = {1, 2, 3, 5, 21, 26, 36, 43} are the input nodes. The cutset

Cd = {22, 30, 38} separatesK from the partitioned set P = {34, 35, 40, 42, 44, 48, 49}. For the

mean shift model, the input wi[k] ∼ N (µi1, σ
2
i I8), where µ1 = 2, µ2 = 1, and σ2

2 = σ2
2 = 1.5,

and σ2
v = 1.2. Instead, for the covariance shift model, the input wi[k] ∼ N (0, σ2

i I8), where

σ2
1 = 25.0, σ2

2 = 0.1, and σ2
v = 0.5. In both the models, N = 200.

Consider all possible subsets of Cd tP whose cardinalities are same as that of the

cutset Cd. It is easy to see that there are 120 such sets. For each of these sets, we associate
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Figure 4.5: Graph associated with a randomly generated network consisting of 50 nodes
[64]. A total of 8 nodes are subjected to stochastic inputs. Instead, sensors are placed on
the cutset nodes and the partitioned nodes that are not collocated with the input nodes.

a label Jind, where ind ∈ {1, . . . , 120}. The labels are given based on a decreasing order

of the error probabilities associated with the subsets. In Fig. 4.6(a) and Fig. 4.6(b), we

show the actual and asymptotic error probabilities of the mean and covariance shift models,

respectively. In both figures, the error probability associated with the Cd is lesser than that

of any Jind. This must be the case because G ≥ 0, and the row sums of the submatrix

‖G̃‖∞ < 1/
√

7 = 0.3780 (see Lemma 39).

4.5 Summary

In this paper we formulate a sensor placement problem for linear dynamical sys-

tems defined over networks with unknown stochastic inputs, using the statistical hypothesis

testing framework. In particular, the main technical contribution of this paper is to derive
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Figure 4.6: Actual and asymptotic error probabilities (Lemma 29) of the MAP and LD-
MAP detectors associated with the node cutset Cd and all possible 3 node subsets of Cd tP
of the network shown in Fig. 4.5.The error probabilities of the detectors associated with
cutset nodes is lower than that of the detectors associated with any subset of the nodes in
the partitioned set. This result is consistent with Lemma 39, because the submatrix G̃ row
sums of the adjacency matrix G are less than 1/

√
m1 (m1 = 7).

sufficient conditions under which a MAP detector associated with the sensors closer to the

input nodes results in better (or worse) performance than compared to a MAP detector

associated with the sensors that are far away from the input nodes. For networks with

non-negative adjacency matrix, we show that the sensors should be placed either near the

origin of the signal or, as far as possible from it, depending on the network parameters.

4.2 Appendix

Proof of proposition 26: From the network dynamics (4.1) and sensor measurements (4.3),

YJ (4.4) can be expanded as

YJ = Ox[0] + Fw0:N−1 + v1:N , (4.20)
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where w0:N−1 = [w[0]T, . . . ,w[N − 1]T]T and v1:N = [v[1]T, . . . ,v[N ]T]T, respectively. The

matrices O and F are defined in the statement of the proposition. The expressions of µi

and Σi in (4.8) follows by taking the expectation and covariance of YJ . �

Proof of Lemma 27: Let ζ and z are the realizations of YJ and y, respectively. Since

the input and measurement noises follows a Gaussian distribution, the probability density

functions of YJ (4.4) and y = bTYJ are

f(ζ|Hi) ∝
1√
|Σi|

exp

[
−1

2
(ζ − µi)

TΣ
−1
i (ζ − µi)

]
and

g(z|Hi) ∝
1√

bTΣib
exp

[
−(z − bTµi)

2

2 bTΣib

]
, (4.21)

respectively, where | · | denotes the determinant. Define the log likelihood ratios Ψ(ζ) =

ln(f(ζ|H2)/f(ζ|H1)) and Ψ̂(z) = ln(f(z|H2)/f(z|H1)). Then, from the mixed Bayes for-

mula [52], the MAP decision rules based on ζ and z, respectively, are given by

Ψ(ζ)
Ĥ=H2

≷
Ĥ=H1

γ and Ψ̂(z)
Ĥ=H2

≷
Ĥ=H1

γ. (4.22)

part 1) Since Σ1 = Σ2 and µ1 6= µ2, from (4.8), it follows that Σ1 = Σ2 and

µ1 6= µ2. Invoking this observation in f(ζ|Hi), yields the following expression for ψ(ζ):

Ψ(ζ) = −0.5µT
∆Σ
−1
2 µ∆ + (y − µ1)T Σ

−1
2 µ∆. (4.23)

Substitute (4.23) in the first decision rule of (4.22) and simplify the expression to obtain the

MAP decision rule (4.9) for ζ. Finally, replacing ζ with YJ yields the required expression.

part 2) In this case we have µ1 = µ2 and Σ1 6= Σ2. A similar procedure, as in

part 1), based on g(z|Hi) (4.22) and the second decision rule in (4.21), yields the LD-MAP

detector’s expression (4.9). Details are left to the reader. �
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Proof of Lemma 29: We divide the proof into two parts. In part 1) we derive the expressions

(4.11) and (4.13) Instead, in part 2) we derive the expressions (4.12) and (4.14).

part 1) Under the assumption that N < ∞, let P̂em(J ) be the error probability

of (4.9).. Then, from (4.9), we have

Pr
(
Ĥ = H2|H1

)
= Pr

(
s > µT

∆Σ
−1
c (µ1 + µ2) |H1

)
and

Pr
(
Ĥ = H1|H2

)
= Pr

(
s < µT

∆Σ
−1
c (µ1 + µ2) |H2

)
,

where s = 2µT
∆Σ
−1
c YJ follows N (µT

∆Σ
−1
c µ1, 4µ

T
∆Σ
−1
c µ∆) under Hi, because s is a linear

transform of YJ |Hi, which follows a Gaussian distribution. Define η̂2 = µT
∆Σ
−1
c µ∆, and

notice that Pr(Ĥ = H2|H1) = QN (0.5 η̂) and Pr(Ĥ = H1|H2) = 1 − QN (0.5 η̂). Finally,

from (4.6), we have P̂em(J ) = 0.5QN (η̂). Define Pem(J ) = limN→∞ P̂em(J ), and note that

Pem(J ) = lim
N→∞

0.5QN (0.5 η̂) = 0.5QN

(
0.5 lim

N→∞
η̂

)

where the final equality follows because η̂ is increasing in N (see Proposition A.43). We

now show that limN→∞ η̂ = η. From (4.8), it follows that

η̂2 = (Fm)T Σ
−1
c (Fm) , (4.24)

where m = 1N ⊗ µ∆ and µ∆ = µ2 − µ1. Let l = 1, 2, . . . ., and define K(l) = CGlΠ

and S(i) =
∑i−1

l=0 K(l). With these definitions and the assumption λ(G) < 1, we have

limi→∞ S(i) = C(I −G)−1Π , K, and

Fm =

[
(S(1)−K)T (S(2)−K)T · · · (S(N)−K)T

]T
︸ ︷︷ ︸

SN

µ∆ +
[
1N ⊗K

]
µ∆. (4.25)
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Let t(SN )=µT
∆

[
ST
NΣ
−1
c SN + 2ST

NΣ−1
c

[
1N ⊗K

]]
µ∆. From (4.25) and (4.24), we have

η̂2 = µT
∆

[
1N ⊗K

]T
Σ
−1
c

[
1N ⊗K

]︸ ︷︷ ︸
F

µ∆ + t(SN ). (4.26)

Since x[0] = 0, from (4.8), it follows that Σc=
[
F (IN ⊗ Σc)FT+σ2

vI
]
. Further,

[
1N ⊗K

]T
Σc =

[
K

T
KΣc + σ2

vI
] [

1N ⊗K
]T

+

K
T
[
S̃T
N (I ⊗ Σc)FT +KΣcS

T
N

]
︸ ︷︷ ︸

M̃

, (4.27)

where S̃N is obtained by permuting, bottom to top, the block matrices of SN (4.25). Right

multiplying either sides of (4.27) with Σc
−1 [

1N ⊗K
]

gives us:

NK
T
K=

[
K

T
KΣc + σ2

vI
]
F + P, (4.28)

where P = M̃Σc
−1

[1N ⊗K] and F is defined in (4.26). Since K
T
KΣc � 0, from (4.28), it

follows that F = [K
T
KΣc + σ2

vI]−1[NK
T
K − P ]. Substituting F in (4.26) yields

η̂2 = NµT
∆([K

T
KΣc + σ2

vI]−1K
T
K)µ∆ + ε(N),

where ε(N) = −µT
∆[K

T
KΣc + σ2

vI]−1Pµ∆ + t(SN ). Finally, substituting K = LΣ
− 1

2
c in the

above expression, and manipulating the terms will give us

η̂2 = N µ̃T
∆

(
[LTL+ σ2

vI]−1LTL
)
µ̃∆ + ε(N). (4.29)

We claim that limN→∞ ε(N) = 0. To see this, rewrite ε(N) as µT
∆(Q1(N) +

Q2(N) +Q3(N))µ∆, where

Q1(N) = ST
N

[
Σ
−1
c SN + 2Σ−1

c

[
1N ⊗K

]]
Q2(N) = [K

T
KΣc + σ2

vI]−1K
T
S̃T
N (I ⊗ Σc)FT

Q3(N) = [K
T
KΣc + σ2

vI]−1K
T
KΣcS

T
N .
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From part 1) of Assumption 28, there exist a k ∈ N such that for all m ∈ {k, k+ 1, . . . , N},

S(m)−K = 0. Thus, all but finite rows of SN (4.25) are zeros, i.e., we can express ST
N as

[FT
1 0T] and S̃T

N as [0T FT
2 ], where the dimension of F1 and F2 depends only k. Thus, for

all N > k, Qi(N) is a constant matrix, say Qi, and we may conclude that

‖µ∆‖22
3∑
i=1

λmin(Qi +QT
i ) ≤ 2

3∑
i=1

µT
∆Qiµ∆ ≤ ‖µ∆‖22

3∑
i=1

λmax(Qi +QT
i ),

where λmax(·) and λmin(·) are the maximum and minimum eigenvalues. Since limN→∞N‖µ∆‖2 =

c (Assumption 28), it follows that limN→∞ ‖µ∆‖2 = 0. Hence, limN→∞ ε(N) = 0 and

limN→∞ η̂ = η (4.13).

part 2) Under the assumption that N < ∞, let P̂ev(J ) be the error probability

of (4.10). Then, from (4.9), we have

Pr
(
Ĥ = H2|H1

)
=Pr

(
ln(R̂)>

[
Z2

bTΣ2b
− Z2

bTΣ1b

]
|H1

)
,

Pr
(
Ĥ = H1|H2

)
=Pr

(
ln(R̂)<

[
Z2

bTΣ2b
− Z2

bTΣ1b

]
|H2

)
,

where Z = bT[YJ−µc] and R̂ = (bTΣ1b/(b
TΣ2b) > 1 (since Σ2 = 0; Assumption 28). Let

U ∼ N (0, 1). Then, Z|Hi
d
= (
√

bTΣib)U , where
d
= means equality in the distribution. From

this fact, we now have Pr(Ĥ = H2|H1) = Pr
(
τ̂ > U2

)
and Pr(Ĥ = H1|H2) = Pr(U2 > τ̂R̂),

where τ̂ = ln(R̂)/(R̂− 1). Since U2 ∼ χ2(1), we finally have

P̂ev(J )=0.5
[
1−Qχ2 (1, τ̂)

]
+ 0.5Qχ2(1, τ̂ R̂).

To simplify R̂, note the following: since b is the maximizer of I-divergence (4.7), from [70],

we can also express R̂ as

R̂ =
bTΣ1b

bTΣ2b
= max

d∈RmN

dTΣ1d

dTΣ2d
.
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Let c = Σ
1/2
2 d, and note the following:

R̂ = max
c∈RmN

(
c

‖c‖2

)T

Σ
−1/2
2 Σ1Σ

−1/2
2

(
c

‖c‖2

)
= λmax

(
Σ
−1/2
2 Σ1Σ

−1/2
2

)
= λmax

(
Σ1Σ

−1
2

)
.

Since R̂ is an increasing sequence, with respect to N (see Proposition A.43), the limits

R = limN→∞ R̂, τ = limN→∞ τ̂ and limN→∞ τ̂ R̂ = τR are well defined. Now, consider

Pev(J ) = lim
N→∞

P̂ev(J )

= lim
N→∞

0.5
[
1−Qχ2 (1, τ̂)

]
+ 0.5Qχ2(1, τ̂ R̂)

= 0.5
[
1−Qχ2 (1, τ)

]
+0.5Qχ2(1, τR),

where the last equality follows because τ̂ and τ̂ R̂ are decreasing and increasing in N (Propo-

sition A.43), respectively. We now show that R is given by (4.14). Since Σ2 = 0 and

x[0] = 0, we have Σ2 = σ2
vI and Σ1 = FFT + σ2

vI, where F = F(IN ⊗Σ
1
2
1 ) and Σ

1
2
1 satisfies

Σ1 = Σ
1
2
1 Σ

1
2
1 . From these observations, we may conclude that

R = lim
N→∞

R̂ = lim
N→∞

λmax(FFT + σ2
vI)

σ2
v

= 1 + σ−2
v lim

N→∞
λmax(FFT). (4.30)

It now suffices to evaluate limN→∞ λmax(FFT. Since λ(G) < 1, we may define the following

matrix valued function [31]:

A(ω) =

∞∑
l=0

K(l)Σ
1/2
1 ejkω ω ∈ [0, 2π],

where K(l) = CGlΠ and j =
√
−1. Since the coefficients K(l)Σ

1/2
1 are absolutely summable,

for any l ∈ N, these coefficients can also be recovered as [31]:

K(l)Σ
1/2
1 =

1

2π

∫ 2π

0
A(ω)e−jlωdω.
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Let z be the conjugate of z ∈ C. Then, from [7, Chapter 6.4], we have

lim
N→∞

λ1/2
max(FFT)=ess sup

ω∈[0,2π]
‖A(ω)‖2

=ess sup
ω∈[0,2π]

∥∥∥∥∥C
( ∞∑
l=0

Glejlω

)
ΠΣ

1/2
1

∥∥∥∥∥
2

=ess sup
ω∈[0,2π]

∥∥∥C (I −Gejw)−1
ΠΣ

1/2
1

∥∥∥
2

= ess sup
{z∈C:|z|=1}

∥∥∥C (zI −G)−1 ΠΣ
1/2
1

∥∥∥
2

(a)
= ess sup
{z∈C:|z|=1}

∥∥∥C (zI −G)−1 ΠΣ
1/2
1

∥∥∥
2

= ess sup
{z∈C:|z|=1}

∥∥∥∥T (z)Σ
1
2
1

∥∥∥∥
2

= ||T (z)Σ
1
2
1 ||∞.

where (a) follows because, for any A ∈ CN×N with A∗ denoting its complex conjugate

transpose, ‖A‖2 = ‖AT‖2 = ‖A∗‖2. Substituting limN→∞ λ
1/2
max(FFT) in (4.30) gives us

R = 1 + σ−2
v ||T ∗(z)||2∞. �

Proof of Theorem 35: Let yP [k] and yS [k] denote the measurements of associated with the

sensor sets P and C, respectively. Since σ2
v = 0, from (4.18), we have

yP [k + 1] = GppyP [k] +ByC [k], (4.31)

where B = Gpc. From (4.31), it follows that

yP [1]

yP [2]

...

yP [N ]


︸ ︷︷ ︸

YP

=



Gpp B

G2
pp GppB

...
...

GNpp GN−1
pp B


︸ ︷︷ ︸

M

yP [0]

yC [0]


︸ ︷︷ ︸

Ŷ[0]

+



0 0 · · · 0 0

B 0 · · · 0 0

...
...

. . .
...

...

GN−2
pp B GN−3

pp B · · · B 0


︸ ︷︷ ︸

M̂



yC [1]

yC [2]

...

yC [N ]


︸ ︷︷ ︸

YC

.
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Since Ŷ[0] is independent of Hi, the assertion of the theorem follows from Lemma 36. �.

Proof of Lemma 36 We shall prove the result assuming that Y and Z = g(Y) + v admits

density functions. With the expense of notation, the given proof can be adapted to handle

random variables that do not have densities. Let L = [YT,ZT]T. Consider the following

log likelihood ratio (LR) based on L:

f(l|M2)

f(l|M1)
=
f(y, g(y) + v|M2)

f(y, g(y) + v|M1)

=
f(y, g(y) + v|y,M2)f(y|M2)

f(y, g(y) + v|y,M1)f(y|M1)

(a)
=
f(y, g(y) + v|y)f(y|M2)

f(y, g(y) + v|y)f(y|M1)
=
f(y|M2)

f(y|M1)
,

where (a) follows because v is independent of Mi. Since LRs of L and Y are equal, the error

probabilities associated with their MAP rules should be the same. Instead, error probability

of the MAP rule based on L is always superior to that of Y or Z alone. Thus δ1 ≤ δ2. �

Proof of Theorem 38: Consider the following deterministic analogue of (4.1): x[k + 1] =

Gx[k] + Πu, where u is arbitrary. Recall that xp[k+ 1] = Gppxp[k] +Gpcxc[k] (4.18). Since

x[0] = 0, for z /∈ spec(G) ∪ spec(Gpp), we have

x[z] = (zI −G)−1Πu and (4.32a)

xp[z] = (zI −Gpp)−1Gpcxc[z] = Ts(z)xc[z]. (4.32b)

From (4.32b), the following inequalities are obvious

ρ(z)‖xc[z]‖2 ≤ ‖xp[z]‖2 ≤ ρ(z)‖xc[z]‖2. (4.33)

Let C1 and C2 be the sensor matrices associated with C and P, respectively. Then,

xc[z] = C1x[z] and xp[z] = C1x[z]. (4.34)
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part 1) We now consider the cases 1a) and 1b). Let Li = Ci(I−G)−1ΠΣ
1
2
c , where

Σc = Σ
1
2
c Σ

1
2
c is defined in Lemma 27. Let z = 1. Then, from (4.34) note that

‖xc[1]‖22 = ‖C1x[1]‖22 = uTLT
1L1u and

‖xp[1]‖22 = ‖C2x[1]‖22 = uTLT
2L2u.

From (4.33) and above identities, it follows that

ρ(1) < 1 =⇒ LT
1L1 + σ2

vI � LT
2L2 + σ2

vI and

ρ(1) > 1 =⇒ LT
2L2 + σ2

vI � LT
1L1 + σ2

vI.

(4.35)

Let u = µ̃∆, where µ̃∆ is defined in the statement of Lemma 29. Let η1 and η2 be the

SNRs of Pem(C) and Pem(P), respectively. Then from (4.13), we have

η2
i = N µ̃T

∆

(
[LT
i Li + σ2

vI]−1LT
i Li

)
µ̃∆.

Using the identity [LT
i Li + σ2

vI]−1LT
i Li = I − σ2

v [L
T
i Li + σ2

vI]−1, we can also express η2
i as

η2
i = µ̃T

∆µ̃∆ − σ2
v µ̃

T
∆

[
LT
i Li + σ2I

]−1
µ̃T

∆. (4.36)

Finally, from (4.36) and (4.35), and Proposition 31, we have

ρ(1) < 1 =⇒ η2
1 ≥ η2

2 =⇒ Pem(Cd)≤Pem(P) and

ρ(1) > 1 =⇒ η2
1 ≤ η2

2 =⇒ Pem(Cd)≥Pem(P).

part 2) We now consider the cases 2a) and 2b). Let Ti(z) = Ci(zI − G)−1. Let

u = Σ
1/2
1 d, where Σ

1/2
1 is defined in the statement of Lemma 29. From (4.34) and (4.32a),

we have xc[k] = T1(z)Σ
1/2
1 d and xc[k] = T2(z)Σ

1/2
1 d. By invoking these two facts in (4.33),
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we may now conclude that

sup
|z|=1

ρ(z) < 1 =⇒ ‖T2(z)Σ
1
2
1 d‖2 ≤ ‖T1(z)Σ

1
2
1 d‖2 and

inf
|z|=1

ρ(z) > 1 =⇒ ‖T2(z)Σ
1
2
1 d‖2 ≥ ‖T1(z)Σ

1
2
1 d‖2,

for all z that satisfies |z| = 1. Let R1 and R2 be the SNRs of Pev(C) and Pev(P), respectively.

Then, from (4.14)

Ri − 1 =
‖Ti(z)Σ

1
2
1 ‖2∞

σ2
v

=

(
ess sup
{z∈C:|z|=1}

‖T2(z)Σ
1/2
1 d‖2

)2

.

From Proposition 31, it follows that

sup
|z|=1

ρ(z) < 1 =⇒ R1 ≥ R2 =⇒ Pev(Cd)≤Pev(P) and

inf
|z|=1

ρ(z) > 1 =⇒ R1 ≤ R2 =⇒ Pev(Cd)≥Pev(P). �

Proof of Corollary 39: We shall prove part 1) of the corollary, and part 2) can be derived

using similar analysis (the details are omitted). The idea of the proof is to show that

||G̃||∞ ≤ 1/
√
m =⇒ ρ(1) < 1, and thereby invoking Theorem 38 yields the result.

step 1) For G ≥ 0, it follows that sup|z|=1 ρ(z) = ρ(1), where ρ(z) is ‖(zI −

Gpp)
−1Gpc‖2. To see this, note the following: For any d ∈ Cn1 , let |d| = (|d1|, . . . , |dn1 |)T.

Then, for any l ∈ N and z that satisfies |z| = 1, we have

|(zGpp)lGpcd| = |(Gpp)lGpcd| ≤ (Gpp)
lGpc|d|,

where the inequality, to be understood coordinate wise, follows because [GppGpc] ≥ 0. From

the above inequality, and the fact |y + z| ≤ |y|+ |z| for any x,y ∈ Cp, we have∣∣∣∣∣
∞∑
l=0

(zGpp)
lGpcd

∣∣∣∣∣ ≤
∞∑
l=0

|(zGpp)lGpcd| ≤
∞∑
l=0

(Gpp)
lGpc|d|.
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Since Gpp is a submatrix of G ≥, which is a non-negative matrix, we have |λmax(zGpp)| =

|λmax(Gpp)| ≤ |λmax(G)| < 1 [5], the above inequality can also be expressed as

∣∣(I − zGpp)−1Gpcd
∣∣ ≤ (I −Gpp)−1Gpc |d| .

Taking 2-norm on both sides of the inequality yields us:

∥∥ ∣∣(I − zGpp)−1Gpcd
∣∣ ∥∥

2
≤
∥∥ (I −Gpp)−1Gpc |d|

∥∥
2
.

Since the above inequality holds for any vector d ∈ Rn1 , using the identity ‖ |x| ‖2 = ‖x ‖2

for any x ∈ Cp, the following inequality is now obvious:

sup
|z|=1

sup
‖d‖2=1

‖(I − zGpp)−1Gpcd‖2 ≤
∥∥ (I −Gpp)−1Gpc

∥∥
2
,

which can be expressed as sup|z|=1 ρ(z) ≤ ρ(1). The equality is attained at z = 1.

step 2) Since sup|z|=1 ρ(z) = ρ(1), from Theorem 38 it readily follows that, both

Pem(Cd)≤Pem(P) and Pev(Cd)≤Pev(P) holds true whenever ρ(1) < 1. We now show that

‖G̃‖∞ = ‖[GppGpc]‖∞ < 1/
√
m1 guarantees ρ(1) < 1. Let 1 denote the all ones vector, and

note the following identity:Gpp Gpc

0 I


k 1

1

 =

Gkpp
∑k−1

l=0 G
l
ppGpc

0 I


k 1

1

 . (4.37)

Since ‖[Gpp Gpc]‖∞ < 1/
√
m1, for any k ∈ N, we also haveGpp Gpc

0 I


k 1

1

 ≤
 1√

m1
1

1

 .
From the above inequality and (4.37), it follows that

lim
k→∞

Gkpp
∑k−1

l=0 G
l
ppGpc

0 I


k 1

1

 ≤
 1√

m1
1

1

 .
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Since |λmax(Gpp)| < 1, as k → ∞, we have Gkpp → 0 and
∑k−1

l=0 G
l
ppGpc → (I −Gpp)−1Gpc.

Thus (I−Gpp)−1Gpc1 = ‖(I−Gpp)−1Gpc‖∞ < 1/
√
m1, and hence, ρ(1) = ||(I−Gpp)−1Gpc||2 <

√
m1||(I −Gpp)−1Gpc||∞ < 1. �

Proof of Proposition 31: SinceQN (x) is decreasing function of x, Pem(J ) (4.11) is decreasing

in SNR η, given by either (4.13) or (4.15). For Pev(J ) (4.12) note the following: first, observe

that R > 1 in both (4.14) and (4.16). Thus

dτ

dR
=

(
R−1
R

)
− lnR

(R− 1)2
< 0, and

d(τR)

dR
=

(R− 1)− lnR

(R− 1)2
> 0.

(4.38)

Hence, we conclude that τ is deceasing in R. Instead, τR is increasing in R. From this

observation and the fact that the Qχ2(1, z) = Pr[Z ≥ z], where Z ∼ χ2(1), is decreasing in

z, it follows that Pev(J ) is decreasing in R. �

Proof of Proposition 42: From (4.19), and the fact that 1 ≤ q < j < . . . < n, where Cd = {j}

and P = {j + 1, . . . , n}, the row sums of G̃ takes values in the set {a + c, a + b + c}. Let

|Gl,q| = |(I − G)−1
l,q |. Using the principle of backward induction, we shall show that, when

‖G̃‖∞ = a+ b+ c < 1, {|Glq|}nl=q is monotonically decreasing. The proof of part (ii) is left

to the reader as an exercise. Let ã = 1− a, b̃ = −b, c̃ = −c. If ã 6= 0, then Gl,q of (I −G)−1

are given by the following expressions [43]:

Gl,q =
1

θn


(−1)l+q b̃q−lθl−1φq+1 q ≥ l

(−1)l+q c̃l−qθq−1φl+1 q < l

(4.39)

where l, q ∈ {1, . . . , n}, and θk and φk are governed by

θk = ãθk−1 − b̃c̃θk−2 for k = 2, . . . , n

φk = ãφk+1 − b̃c̃φk+2 for k = n− 1, . . . , 1

(4.40)
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where θ0 = 1, θ1 = ã, φn = ã, φn+1 = 1 and θn = det(I−G). Let L = {q+1, . . . , n}. Then,

for any l ∈ L ∪ {q},

|Glq| , |(I −G)−1
lq | =

∣∣∣∣θq−1c̃
−q

θn

∣∣∣∣ ∣∣∣c̃lφl+1

∣∣∣ ,
Let l ∈ L, and define ζ(l) = |Gl,q|/|Gl−1,q|. Since φn+1 = 1 and φn = ã, for l = n (base

step), it follows that

ζ(n) =
|Gnq|
|Gn−1,q|

=
|c̃nφn+1|
|c̃n−1φn|

=
|c̃|
|ã| =

c

1− a
(i)
< 1,

where (i) follows because a, b, c > 0, and a + b + c < 1. Let q < l < n and ζ(l + 1) < 1

(inductive step). Then,

ζ(l) =
|Gl,q|
|Gl−1,q|

=
|c̃| |φl+1|
|φl|

(4.40)
=

c∣∣∣ã− b̃c̃(φl+2

φl+1

)∣∣∣ < 1,

To see the last inequality, consider the following:

b+ c < 1− a (ii)
=⇒ b

( |c̃||φl+2|
|φl+1|

)
+ c < 1− a

=⇒ b

(
cφl+2

φl+1

)
+ c < 1− a

=⇒ c∣∣∣(1− a)− bc
(
φk+2

φk+1

)∣∣∣ < 1

(iii)
=⇒ |c̃|∣∣∣ã− b̃c̃(φl+2

φl+1

)∣∣∣ < 1,

where (ii) follows because the hypothesis ζ(l + 1) < 1 implies that |c̃|(|φl+2|/|φl+1|) < 1,

and (iii) from the fact that ã = 1 − a, b̃ = −b, and c̃ = −c. From the principle of finite

induction, for all l ∈ L, we have ζ(l) < 1. Hence, {|Glq|}nl=q is a decreasing sequence. �

Proposition A.43 Let η̂2 = µT
∆Σ
−1
c µ∆, R̂ = λmax(Σ1Σ

−1
2 ) and τ̂ = ln(R̂)/(R̂− 1), where

(µ∆, Σc, Σ1, Σ2) are defined in the statement of Lemma 27. Then, η̂, R̂, and τ are

increasing in N . However, τ̂ R̂ is decreasing in N .
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Proof. Let N < ∞. Then, from Proposition 26, we have µ∆ = E [YJ |H2] − E [YJ |H1],

Σc = Cov[YJ |H1] = Cov[YJ |H2]. For clarity, we drop the existing subscripts and replace

them with the total number of measurements. Let N2 = N1 + k, k ∈ N, and consider

YT
N2

=

[
YT
N1
, ZT

k

]
, where Zk are the measurements collected after N1. Then,

µN2
=

 µN1

mk

 and ΣN2 =

 ΣN1 D

DT M

 ,
where mk = E[Zk|H2]−E[Zk|H1], M = Cov[Zk|H1] > 0, and D=Cov[Yk,Zk|H1]. Further,

using the Schur complement, Σ
−1
N2

can be expressed as

Σ
−1
N2

=

 ΣN1 D

DT M


−1

=

 Σ
−1
N1

0

0T 0

+ F︸︷︷︸
>0

.

From the above identity, it follows that

η̂N2 =
(
µT
N2

Σ
−1
N2

µN2

) 1
2

=
(
µT
N1

Σ
−1
N1

µN1
+ µT

N2
FµN2

) 1
2

≥
(
µT
N1

Σ
−1
N1

µN1

)
= η̂N1 .

Hence, we may conclude that η̂ is increasing in N . Instead, from the eigenvalue interlacing

property for the symmetric matrix pencils [44], it follows that R̂ = λmax(Σ1Σ
−1
2 ) is increas-

ing in N . Finally, from (4.38), it follows that τ̂ and τ̂ R̂ are decreasing and increasing in N ,

respectively.
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Chapter 5

Conclusions and Future Work

This dissertation is concerned with security of dynamical systems with emphasis

on interconnected and networked type dynamical systems. For interconnected systems, in

chapter 2, we highlighted the trade-offs between the performance of centralized and decen-

tralized detectors, and showed that a decentralized detector can outperform its centralized

counterpart, despite having less information about the system dynamics, and this property

is due to the nature of the considered attack detection problem. We illustrated our findings

on a real time power system model. Instead, in chapter 3, we developed a probabilistic

rule to randomly select a subsystem to attack, over time, and optimize over the switching

probabilities to maximize degradation and maintain undetectability from a centralized de-

tector. Overall, our results show that the ability to selectively compromise different parts

of a system over time greatly increases the severity of the attacks, thereby motivating the

development of advanced detection schemes for interconnected type dynamical systems.

For networked dynamical systems, in chapter 4, we studied a problem of detecting
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changes in the statistical properties of an input driving certain network nodes has to be

detected by sparse and remotely located sensors. We explicitly derive the Maximum A

Posteriori (MAP) detector, and characterize its performance as a function of the network

parameters, and the location of the sensor nodes. We show that, in the absence of measure-

ment noise, the detection performance obtained when sensors are located on a network cut is

not worse than the performance obtained by measuring all nodes of the subnetwork induced

by the cut and not containing the input node. Conversely, in the presence of measurement

noise, we show that the detection performance may increase or decrease with the graphical

distance between the input node and the sensors. Our analysis provided structural insights

into the optimal sensor placement problem. Opportunities for future work, with regards to

the current results in this thesis, includes the following:

• In chapter 1, we worked with a particular detection scheme and characterized perfor-

mance degradation due to undetectable detects. Several questions remain of interest

for future investigation, including the characterization of optimal detection schemes,

an analytical comparison of the degradation induced by undetectable attacks as a

function of the detection scheme, and the analysis of iterative detection strategies.

• In chapter 2, we were only able to demonstrate the superiority of probabilistic attacks

over a deterministic attack through numerical examples (the main difficulty being the

optimal probabilistic rule turned out to be a solution of non-convex optimization prob-

lem). As seen in the formulation of (P.2), one can see that, the optimal probabilistic

rule depends on the subsystem dynamics, interconnection signals, and the choice of

attack matrices. Understanding the role of these quantities on the optimal policy and

providing exact theoretical characterizations is also of interest.
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• In chapter 3, the analytical expressions of error probabilities are limited only to spe-

cial cases of general Gaussian detection problem. Further, we considered only time

invariant network models with deterministic edge weights. It would be interesting to

extend our network analysis to the time varying networks with random edge weights,

and also to the case where the input signal is non-Gaussian.

We end this section by commenting on the security aspects of dynamical systems

whose mathematical models are not necessarily given by the classical physics principles,

but are obtained using data-driven algorithms. For instance, Reinforcement or Statistical

learning based methods. As a result, these models will have completely different mathe-

matical as compared to thee existing parametric models. Hence, it is far from clear if the

characterizations provided in the thesis, or existing characterizations in the cyber-physical

security literature, extend naturally to these so called data-driven dynamical systems. As

a preliminary step towards this line of research, we are currently developing a theoretical

framework to understand the robustness of data driven closed loop systems using tools from

non-asymptotic random matrix theory. In particular, we are trying to come up with sharp

bounds on the probability of stability of a random closed loop LTI system, whose feedback

matrix is random. The hope is that using these bounds we can understand the role of system

theoretic properties on the behavior of the spectral radius of the closed loop system. The

stability of random matrices is still an open problem, and we firmly believe the following

spirit shared by authors in [9]: the one who adventures in the field of random matrix theory,

with emphasis on control applications, will encounter unexpected and exciting connections

among different fields of science and beautiful branches of mathematics.
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