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a b s t r a c t

We study a security problem for interconnected systems, where each subsystem aims to detect
local attacks using local measurements and information exchanged with neighboring subsystems. The
subsystems also wish to maintain the privacy of their states and, therefore, use privacy mechanisms
that share limited or noisy information with other subsystems. We quantify the privacy level based
on the estimation error of a subsystem’s state and propose a novel framework to compare different
mechanisms based on their privacy guarantees. We develop a local attack detection scheme without
assuming the knowledge of the global dynamics, which uses local and shared information to detect
attacks with provable guarantees. Additionally, we quantify a trade-off between security and privacy
of the local subsystems. Interestingly, we show that, for some instances of the attack, the subsystems
can achieve a better detection performance by being more private. We provide an explanation for this
counter-intuitive behavior and illustrate our results with examples.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamical systems are becoming increasingly more
distributed, diverse, complex, and integrated with cyber compo-
nents. Usually, these systems are composed of multiple subsys-
tems, which are interconnected among each other via physical,
cyber and other types of couplings (for example, a smart city)
(Rinaldi, Peerenboom, & Kelly, 2001). Although these subsystems
are interconnected, it is usually difficult to directly measure the
couplings and dependencies between them (Rinaldi et al., 2001).
As a result, they are often operated independently without the
knowledge of the other subsystems’ models and dynamics.

Modern dynamical systems are also increasingly more vulner-
able to cyber/physical attacks that can degrade their performance
or may even render them inoperable (Cardenas, Amin, & Sastry,
2008). There have been many recent studies on attack analysis
and possible remedial strategies (see Giraldo, Sarkar, Cardenas,
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Maniatakos and Kantarcioglu, 2017 and the references therein),
where a key component is detection of attacks using the mea-
surements generated by the system. Due to the autonomous
nature of the subsystems, each subsystem is primarily concerned
with detection of local attacks which affect its operation directly.
However, local attack detection capability of each subsystem
is limited due to the absence of knowledge of the dynamics
and couplings with external subsystems. One way to mutually
improve the detection performance is to share information and
measurements among the subsystems. Yet, these measurements
may contain confidential information and subsystem operators
may be willing to share only limited information due to privacy
concerns. In this paper, we study this trade-off between the
attack detection performance (security) and the amount/quality
of shared measurements (privacy).

Related work: Centralized attack detection and estimation
schemes in dynamical systems have been studied in both de-
terministic (Fawzi, Tabuada, & Diggavi, 2014; Pasqualetti, Dör-
fler, & Bullo, 2013) and stochastic (Chen, Kar, & Moura, 2018;
Mo & Sinopoli, 2016) settings. Recently, there has also been
studies on distributed attack detection including information
exchange among the components of a dynamical system. Dis-
tributed strategies for attacks in power systems are presented in
Cui, Han, Kar, Kim, Poor, and Tajer (2012) and Nishino and Ishii
(2014). In Pasqualetti et al. (2013) and Pasqualetti, Dörfler, and
Bullo (2015), centralized and decentralized monitor design was
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presented for deterministic attack detection and identification.
In Forti, Battistelli, Chisci, Li, Wang, and Sinopoli (2018) and
Guan and Ge (2018), distributed strategies for joint attacks
detection and state estimation are presented. Residual based
tests (Boem, Gallo, Ferrari-Trecate, & Parisini, 2017) and
unknown-input observer-based approaches (Teixeira, Sandberg,
& Johansson, 2010) have also been proposed for attack detection.
A comparison between centralized and decentralized detection
schemes was presented in Anguluri, Katewa, and Pasqualetti
(2020), where, differently from this work, local detectors use only
local measurements.

Distributed fault detection techniques requiring information
sharing among the subsystems have also been studied. For
instance, in Ferrari, Parisian, and Polycarpou (2012), Yan and
Edwards (2008) and Zhang and Zhang (2012) fault detection
for non-linear interconnected systems is presented. These works
typically use observers to estimate the state/output, compute
the residuals and compare them with appropriate thresholds to
detect faults. For linear systems, distributed fault detection is
studied using consensus-based techniques in Franco, Olfati-Saber,
Parisini, and Polycarpou (2006) and Stankovic, Ilic, Djurovic,
Stankovic, and Johansson (2010) and unknown-input observer
techniques in Shames, Teixeira, Sandberg, and Johansson (2011).

There have also been recent studies related to privacy in
dynamical systems. Differential privacy based mechanisms in
the context of consensus, filtering and distributed optimization
have been proposed (see Cortes, Dullerud, Han, Le Ny, Mitra, &
Pappas, 2016 and the references therein). These works develop
additive noise-based privacy mechanisms, and characterize the
trade-offs between the privacy level and the control performance.
Other privacy measures based on information theoretic metrics
like conditional entropy (Akyol, Langbort, & Basar, 2015) and
mutual information (Farokhi & Nair, 2016; Tanaka, Skoglund,
Sandberg, & Johansson, 2017) have also been proposed. A privacy
vs. cooperation trade-off for multi-agent systems was presented
in Katewa, Pasqualetti, and Gupta (2018). In Mo and Murray
(2017), a privacy mechanism for consensus was presented, where
privacy is measured in terms of estimation error covariance of the
initial state. The authors in Giraldo, Cardenas and Kantarcioglu
(2017) showed that the privacy mechanism can be used by an
attacker to execute stealthy attacks in a centralized setting.

In contrast to these works, we identify a novel and counter-
intuitive trade-off between security and privacy in intercon-
nected dynamical systems. In a preliminary version of this work
(Anguluri, Katewa, & Pasqualetti, 2018), we compared the detec-
tion performance between the cases when the subsystems share
full measurements (no privacy mechanism) and when they do not
share any measurements. In this paper, we introduce an interme-
diate privacy framework and present an analytic characterization
of privacy-performance trade-offs.

Contributions: The main contributions of this paper are as fol-
lows. First, we propose a privacy mechanism to keep the states of
a subsystem private from other subsystems in an interconnected
system. The mechanism limits both the amount and quality of
shared measurements by projecting them onto an appropriate
subspace and adding suitable noise to the measurements. This
is in contrast to prior works which use only additive noise for
privacy. We define a privacy ordering and use it to quantify
and compare the privacy of different mechanisms. Second, we
propose and characterize the performance of a chi-squared (�2)
attack detection scheme to detect local attacks in absence of the
knowledge of the global system model. The detection scheme
uses local and received measurements from neighboring sub-
systems. Third, we characterize the trade-off between the pri-
vacy level and the local detection performance. Interestingly, our
analysis shows that in some cases both privacy and detection

performance can be improved by sharing less information. This
reveals a counter-intuitive behavior of the widely used �2 test for
attack detection (Chen et al., 2018; Mo & Sinopoli, 2016), which
we illustrate and explain.

Mathematical notation: Tr(·), Im(·), Null(·) and Rank(·) denote
the trace, image, null space, and rank of a matrix, respectively.
(·)T and (·)+ denote the transpose and Moore–Penrose pseudo-
inverse of a matrix. A positive (semi)definite matrix A is denoted
by A > 0 (A � 0). diag(A1, A2, . . . , An) denotes a block diagonal
matrix whose block diagonal elements are A1, A2, . . . , An. The
identity matrix is denoted by I . A scalar � 2 C is called a
generalized eigenvalue of (A, B) if (A� �B) is singular. ⌦ denotes
the Kronecker product. A zero mean Gaussian random variable y
is denoted by y ⇠ N (0, ⌃y), where ⌃y denotes the covariance of
y. The (central) chi-square distribution with q degrees of freedom
is denoted by �2

q and the noncentral chi-square distribution with
noncentrality parameter � is denoted by �2

q (�). For x � 0,
let Qq(x) and Qq(x; �) denote the right tail probabilities of a
chi-square and noncentral chi-square distributions, respectively.

2. Problem formulation

We consider an interconnected discrete-time LTI dynamical
system composed of N subsystems. Let S , {1, 2, . . . ,N} denote
the set of all subsystems and let S�i , S \ {i}, where \ de-
notes the exclusion operator. The dynamics of the subsystems are
given by:

xi(k + 1) = Aixi(k) + Bix�i(k) + wi(k), (1)

yi(k) = Cixi(k) + vi(k) i 2 S, (2)

where xi 2 Rni and yi 2 Rpi are the state and output/
measurements of subsystem i, respectively. Let n ,

PN
i=1 ni. Sub-

system i is coupled with other subsystems through the intercon-
nection term Bix�i(k), where x�i , [xT1, . . . , x

T
i�1, x

T
i+1, . . . , x

T
N ]T 2

Rn�ni denotes the states of all other subsystems. We refer to x�i
as the interconnection signal. Further, wi 2 Rni and vi 2 Rpi

are the process and measurement noise, respectively. We assume
that wi(k) ⇠ N (0, ⌃wi ) and vi(k) ⇠ N (0, ⌃vi ) for all k � 0, with
⌃wi > 0 and ⌃vi > 0. The process and measurement noise are
assumed to be white and independent for different subsystems.
Finally, we assume that the initial state xi(0) ⇠ N (0, ⌃xi(0)) is
independent of wi(k) and vi(k) for all k � 0. We make the
following assumption:

Assumption 1. Subsystem i has perfect knowledge of its dynam-
ics, i.e., it knows (Ai, Bi, Ci), the statistical properties of wi, vi
and xi(0). However, it does not have knowledge of the dynamics,
states, and the statistical properties of the noises of the other
subsystems. ⇤

We consider the scenario where each subsystem can be under
an attack. We model the attacks as external linear additive inputs
to the subsystems, whose dynamics read as

xi(k + 1) = Aixi(k) + Bix�i(k) + Ba
i ãi(k)| {z }

, ai(k)

+wi(k), (3)

where ãi 2 Rri is the local attack input for Subsystem i, which is
assumed to be a deterministic but unknown signal for all i 2 S .
The matrix Ba

i dictates how the attack ãi affects Subsystem i, and
is unknown to Subsystem i.

Each subsystem is equipped with an attack monitor. Since
Subsystem i does not know Ba

i , it can only detect ai = Ba
i ãi.

The detection procedure requires the knowledge of the statistical
properties of yi which depend on the interconnection signal x�i.
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Fig. 1. An interconnected system consisting of N = 4 subsystems. The solid
lines represent state coupling among the subsystems. For attack detection
by Subsystem 1, its neighboring agents 2 and 3 communicate their output
information to 1 (denoted by dashed lines). The attack monitor associated with
Subsystem 1 uses the received information and the local measurements to detect
attacks.

Since the subsystems do not have knowledge of the interconnec-
tion signals (cf. Assumption 1), they share their measurements
among each other to aid the local detection of attacks (see Fig. 1).

While the shared measurements help in detecting local at-
tacks, they can also reveal sensitive information. To protect the
privacy of such states/outputs, we propose a privacy mechanism
Mi through which a subsystem limits the amount and quality
of its shared measurements. Instead of sharing the complete
measurements in (2), Subsystem i shares limited measurements
(denoted as ỹi) given by:

Mi : ỹi(k) = Siyi(k) + r̃i(k)
(2)
= SiCixi(k) + Sivi(k) + r̃i(k), (4)

where Si 2 Rmi⇥pi is a selection matrix suitably chosen to select
a subspace of the outputs, and r̃i(k) ⇠ N (0, ⌃r̃i ) is an artifi-
cial white noise (independent of wi and vi) added to introduce
additional inaccuracy in the shared measurements. Without loss
of generality, we assume Si to be full row rank for all i 2 S .
Thus, a subsystem can limit its shared measurement via a com-
bination of two mechanisms (i) by sharing fewer (or a subspace
of) measurements, and (ii) by sharing more noisy measurements.
Intuitively, when Subsystem i limits its shared measurements,
the estimates of its states/outputs computed by the other sub-
systems become more inaccurate, thereby protecting its privacy
(a detailed explanation is in Section 4).

Let Ii , {Ci, Si, ⌃vi , ⌃r̃i} denote the parameters corresponding
to the limited measurements of subsystem i.

Assumption 2. Each subsystem i 2 S shares its limited mea-
surements ỹi in (4) and the parameters Ii with all neighboring
subsystems j 2 S�i.1 ⇤

Under Assumptions 1 and 2, the goal of each subsystem i
is to detect the local attack ai using its local measurements yi
and the limited measurements {ỹj}j2S�i received from the other
subsystems (see Fig. 1). Further, we are interested in character-
izing the trade-off between the privacy level and the detection
performance.

1 To be precise, this information sharing is required only between neighbor-
ing subsystems, i.e., between subsystems that are directly coupled with each
other in (1).

3. Local attack detection

In this section we present the local attack detection procedure
of the subsystems and characterize their performance. For the
ease of presentation and without loss of generality, we describe
the analysis for Subsystem 1 only.

3.1. Measurement collection

We employ a batch detection scheme in which each subsystem
collects the measurements for k = 1, 2, . . . , T , and performs
detection based on the collective measurements.

Local measurements: Let the time-aggregated local measure-
ments be denoted by yL , [yT1(1), y

T
1(2), . . . , y

T
1(T )]

T. Similarly,
denote the time-aggregated (k = 1 to T ) measurement noise, and
time aggregated (k = 0 to T �1) interconnection signals, attacks,
and process noise by v, x, ã and w, respectively. Let

F (Z) ,

2

664

C1Z 0 · · · 0
C1A1Z C1Z · · · 0

...
...

. . .
...

C1AT�1
1 Z C1AT�2

1 Z · · · C1Z

3

775 = F (I)(IT ⌦ Z). (5)

By using (3) recursively and (2), we have

yL = Ox1(0) + Fxx + Fãã + Fww + v, (6)
where Fx = F (B1), Fã = F (Ba

1), Fw = F (I), and

O =
⇥
(C1A1)T (C1A2

1)
T · · · (C1AT

1)
T
⇤T

.

Note that w ⇠ N (0, ⌃w) and v ⇠ N (0, ⌃v) with ⌃w = IT ⌦

⌃w1 > 0 and ⌃v = IT ⌦ ⌃v1 > 0. Let vL , Ox1(0) + Fww + v
denote the effective local noise in the measurement equation (6).
Using the fact that (x1(0), w, v) are independent, the overall local
measurements are given by

yL = Fxx + Fãã + vL, where (7)
vL ⇠ N (0, ⌃vL ), ⌃vL = O⌃x1(0)O

T
+ Fw⌃wFT

w + ⌃v > 0.

Shared measurements: Let the limited measurements received
by Subsystem 1 from all the other subsystems at time k be
denoted by ỹ�1(k) , [ỹT2(k), ỹ

T
3(k), . . . , ỹ

T
N (k)]

T. Further, let v�1(k)
and r̃�1(k) denote similar aggregated vectors of

�
vj(k)

 
j2S�1

and�
r̃j(k)

 
j2S�1

, respectively.
Then, from (4) we have

ỹ�1(k) = S�1C�1x�1(k) + S�1v�1(k) + r̃�1(k), (8)
where S�1 , diag(S2, . . . , SN ), C�1 , diag(C2, . . . , CN ),
v�1(k) ⇠ N (0, ⌃v�1 ), ⌃v�1 = diag(⌃v2 , . . . , ⌃vN ) > 0,
r̃�1(k) ⇠ N (0, ⌃r̃�1 ), ⌃r̃�1 = diag(⌃r̃2 , . . . , ⌃r̃N ) � 0.

Further, let the time-aggregated limited measurements re-
ceived by Subsystem 1 be denoted by yR ,
[ỹT

�1(0), ỹ
T
�1(1), . . . , ỹ

T
�1(T � 1)]T, and let vR denote similar time-

aggregated vector of
�
S�1v�1(k) + r̃�1(k)

 
k=0,...,T�1. Then, from

(8), the overall limited measurements received by Subsystem 1
read as

yR = Hx + vR, where (9)
H , IT ⌦ S�1C�1, and vR ⇠ N (0, ⌃vR )

with ⌃vR = IT ⌦ (S�1⌃v�1S
T
�1 + ⌃r̃�1 ) > 0.

The goal of Subsystem 1 is to detect local attacks using the local
and received measurements given by (7) and (9).

3
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3.2. Measurement processing

Since Subsystem 1 does not have access to the interconnection
signal x, it uses the received measurements to obtain an esti-
mate of x. Note that Subsystem 1 is oblivious to the statistics of
the stochastic signal x. Therefore, it computes an estimate of x
assuming that x is a deterministic but unknown quantity.

According to (9), yR ⇠ N (Hx, ⌃vR ), and the Maximum Likeli-
hood (ML) estimate of x based on yR is computed by maximizing
the log-likelihood function of yR:

x̂ = argmax
z

�
1
2
(yR � Hz)T⌃�1

vR
(yR � Hz)

(a)
= H̃+HT⌃�1

vR
yR + (I � H̃+H̃)d, where

H̃ , HT⌃�1
vR

H � 0,
(10)

d is any real vector of appropriate dimension, and equality (a)
follows from Lemma A.1 in the Appendix. If H̃ (or equivalently
H) is not full column rank, then the estimate can lie anywhere in
Null(H̃) = Null(H) (shifted by H̃+HT⌃�1

vR
yR). Thus, the component

of x that lies in Null(H) cannot be estimated and only the com-
ponent of x that lies in Im(H̃) = Im(HT) can be estimated. Based
on this discussion, we decompose x as

x = (I � H̃+H̃)x + H̃+H̃x = (I � H̃+H̃)x + H̃+HT⌃�1
vR

Hx
(9)
= (I � H̃+H̃)x + H̃+HT⌃�1

vR
(yR � vR). (11)

Substituting x from (11) in (7), we get

yL = Fx(I � H̃+H̃)x + FxH̃+HT⌃�1
vR

(yR � vR) + Fãã + vL. (12)

Next, we process the local measurements in two steps. First,
we subtract the known term FxH̃+HT⌃�1

vR
yR. Second, we elimi-

nate the component (I � H̃+H̃)x (which cannot be estimated) by
premultiplying (12) by MT, where

M = Basis of Null
⇣
[Fx(I � H̃+H̃)]T

⌘
,

) MTFx(I � H̃+H̃) = 0. (13)

Since the columns of M are basis vectors, M is full column
rank. The processed measurements are given by

z = MT(yL � FxH̃+HT⌃�1
vR

yR)
(12),(13)

= MTFãã + MT(vL � FxH̃+HT⌃�1
vR

vR),| {z }
, vP

(14)

where vP ⇠ N (0, ⌃vP ). The random variables vL and vR are
independent because they depend exclusively on the local and
external subsystems’ noise, respectively. Thus

⌃vP = MT
h
⌃vL + FxH̃+HT⌃�1

vR
⌃vR⌃

�T
vR

H(H̃+)TFT
x

i
M

H̃T=H̃
= MT⌃vLM + MTFxH̃+FT

x M
(a)
> 0, (15)

where (a) follows from the facts that M is full column rank
and ⌃vL > 0. The processed measurements z in (14) depend
only on the local attack ã, and the Gaussian noise vP whose
statistics is known to Subsystem 1 (cf. Assumptions 1 and 2),
i.e. z ⇠ N (MTFãã, ⌃vP ). Thus, Subsystem 1 uses z to perform
attack detection.

Remark 1 (Limitations of Measurement Processing). The operation
of eliminating the unknown component (I � H̃+H̃)x from yL also
eliminates a component of attack ã. As a result, the space of un-
detectable attack vectors increases from Null(Fã) to Null(MTFã). In

some cases, this operation can also result in complete elimination
of attacks, and attack detection is not possible (Katewa, Anguluri,
& Pasqualetti, 2020). ⇤

3.3. Statistical hypothesis testing

The goal of Subsystem 1 is to determine whether it is under
attack using the measurements z in (14). Recall that, since Sub-
system 1 does not know Ba

1, it can only detect a1 = Ba
1ã1. Let

a , [(Ba
1ã1(0))

T, . . . , (Ba
1ã1(T � 1))T]T. Then, from (6), we have

Fãã = Faa, where Fa = F (I). Thus, processed measurements
are distributed according to z ⇠ N (MTFaa, ⌃vP ). We cast the
attack detection problem as a binary hypothesis testing problem.
Let H0 and H1 denote the hypotheses that the attack is absent
(a = 0) and present (a = 1), respectively. We use the Generalized
Likelihood Ratio Test (GLRT) criterion (Wasserman, 2004) for the
above testing problem, which is given by

f (z|H0)
sup
a

f (z|H1)
H0
?
H1

⌧ 0 (16)

where f (z|H0) and f (z|H1) are the probability density functions of
the multivariate Gaussian distribution of z under hypotheses H0
and H1, respectively, and ⌧ 0 is a suitable threshold. Using the re-
sult in Lemma A.1 in the Appendix to compute the denominator
in (16) and taking the logarithm, the test (16) can be equivalently
written as

t(z) , zT⌃�1
vP

MTFaM̃+FT
a M⌃�1

vP
z

H1
?
H0

⌧ , (17)

where M̃ = FT
a M⌃�1

vP
MTFa,

and ⌧ � 0 is the threshold. The above test is a �2 test since the
test statistics t(z) follows a chi-squared distribution.

Lemma 3.1 (Distribution of Test Statistics). The distribution of test
statistics t(z) in (17) is given by

t(z) ⇠ �2
q under H0, (18)

t(z) ⇠ �2
q (� , aT⇤a) under H1, (19)

where q = Rank(MTFa) and ⇤ = FT
a M⌃�1

vP
MTFa.

Proof. Let ⌃�1
vP

= RTR (R non-singular) denote the Cholesky de-
composition of ⌃�1

vP
. Further, let the columns of U be orthonormal

basis vectors of Im(RMTFa). Then,

Rank(UTU) = Rank(U) = Rank(RMTFa) = Rank(MTFa).

Let z 0 = UTRz. Under H0, z ⇠ N (0, ⌃vP ). Thus,

z 0
⇠ N (0,UTR⌃vP R

TU) (a)
= N (0, Iq),

where (a) follows from R⌃vP R
T = I and UTU = Iq. Therefore,

t(z) = (z 0)Tz 0 ⇠ �2
q .

Let M1 = MTFa. Under H1, z ⇠ N (M1a, ⌃vP ). Thus,

z 0
⇠ N (UTRM1a, Iq)

) t(z) = (z 0)Tz 0
⇠ �2

q (a
TMT

1R
TUUTRM1a).

Since RM1(RM1)+ is the orthogonal projection operator on Im
(RM1), we get RM1(RM1)+ = UUT. Therefore

aTMT
1R

TUUTRM1a = aT(RM1)T(RM1)(RM1)+(RM1)a
= aT(RM1)T(RM1)a = aTMT

1⌃�1
vP

M1a = �,

and the proof is complete. ⌅
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Remark 2 (Interpretation of Detection Parameters (q, �)). The pa-
rameter q denotes the number of independent observations of the
attack vector a in the processed measurements (14). The param-
eter � can be interpreted as the signal to noise ratio (SNR) of the
processed measurements in (14), where the signal of interest is
the attack. ⇤

Next, we characterize the performance of the test (17). Let the
probability of false alarm and probability of detection for the test
be respectively denoted by

PF = Prob(t(z) > ⌧ |H0)
(a)
= Qq(⌧ ) and,

PD = Prob(t(z) > ⌧ |H1)
(b)
= Qq(⌧ ; �),

where (a) and (b) follow from (18) and (19), respectively. Re-
call that Qq(x) and Qq(x; �) denote the right tail probabilities of
chi-square and noncentral chi-square distributions, respectively.
Inspired by the Neyman–Pearson test framework, we select the
size (PF ) of the test and determine the threshold ⌧ which provides
the desired size. Then, we use the threshold to perform the test
and compute the detection probability. Thus, we have

⌧ (q, PF ) = Q�1
q (PF ), (20)

PD(q, �, PF ) = Qq(⌧ (q, PF ); �). (21)

The arguments in ⌧ (q, PF ) and PD(q, �, PF ) explicitly denote the
dependence of these quantities on the detection parameters (q, �)
and the probability of false alarm (PF ). Note that the detection
performance of Subsystem 1 is characterized by the pair (PF , PD),
where a lower value of PF and a higher value of PD is desirable.
In order to compare the performance of two different tests, we
select a common value of PF and then compare the values of PD.

Lemma 3.2 (Dependence of Detection Performance on Detection
Parameters (q, �)). For any given false alarm probability PF , the
detection probability PD(q, �, PF ) is decreasing in q and increasing
in �.

Proof. Since PF is fixed, we omit it in the notation. It is a
standard result that for a fixed q (and ⌧ (q)), the CDF (= 1 �

Qq(⌧ (q); �) = 1 � PD(q, �)) of a noncentral chi-square random
variable is decreasing in � (Johnson, Kotz, & Balakrishnan, 1995).
Thus, PD(q, �) is increasing in �. Next, we have (Johnson et al.,
1995)

PD(q, �) = e��/2
1X

j=0

(�/2)j

j!
Qq+2j(⌧ (q)).

From Furman and Zitikis (2008, Corollary 3.1), it follows that
Qq+2j(⌧ (q)) = Qq+2j(Q�1

q (PF )) is decreasing in q for all j > 0. Thus,
PD(q, �) is decreasing in q. ⌅

Fig. 2 illustrates the dependence of the detection probability
on the parameters (q, �). Lemma 3.2 implies that for a fixed q,
a higher SNR (�) leads to a better detection performance, which
is intuitive. However, for a fixed �, an increase in the number
of independent observations (q) results in degradation of the
detection performance. This counter-intuitive behavior is due to
the fact that the GLRT in (16) is not a uniformly most powerful
(UMP) test for all values of the attack a. In fact, a UMP test does
not exist in this case (Lehmann & Romano, 2005). Thus, the test
can perform better for some particular attack values while it may
not perform as good for other attack values. This suboptimality
is an inherent property of the GLRT in (16). It arises due to the
composite nature of the test and the fact that the value of attack
a is not known to the attack monitor.

Fig. 2. Dependence of the detection probability PD on the detection parameters
(q, �) for a fixed PF = 0.05. PD decreases monotonically with q in (a), and it
increases monotonically with � in (b).

4. Privacy quantification

In this section, we quantify the privacy of the mechanism Mi
in (4) in terms of the estimation error covariance of the state xi.
For simplicity, we assume i 6= 1, and this estimation is performed
by Subsystem 1, which is directly coupled with Subsystem i and
receives limited measurements from it. Then, we use the privacy
quantification to compare and rank different privacy mechanisms.

We use a batch estimation scheme in which the estimate is
computed based on the collective measurements obtained for k =

0, 1, . . . , T � 1, with T > 0. Let ỹi = [ỹTi (0), . . . , ỹ
T
i (T � 1)]T, and

let xi, vi, r̃i be similar time-aggregated vectors of xi(k), vi(k), r̃i(k),
respectively. Then,

ỹi = (IT ⌦ SiCi| {z }
, Hi

)xi + (IT ⌦ Si)vi + r̃i| {z }
, ri

, (22)

where ri ⇠ N (0, ⌃ri ) with ⌃ri = IT ⌦ (Si⌃vi S
T
i + ⌃r̃i ). Note that

Subsystem 1 that receives measurements (22) from Subsystem
i knows {Hi, ⌃ri} (cf. Assumption 2). However, it is oblivious to
the statistics of the confidential stochastic signal xi. Therefore, it
computes an estimate of xi assuming that xi is a deterministic but
unknown quantity. Further, this estimate is computed by Subsys-
tem 1 using the measurements received only from Subsystem i,
and it does not use its local measurements or the measurements
received from other subsystems for this purpose.2

According to (22), ỹi ⇠ N (Hixi, ⌃ri ), and the ML estimate of xi
based on ỹi is:

x̂i
(a)
= H̃+

i HT
i ⌃�1

ri ỹi + (I � H̃+

i H̃i)di, where

H̃i , HT
i ⌃�1

ri Hi � 0,
(23)

di is any real vector of appropriate dimension, and equality (a)
follows from Lemma A.1. If H̃i (or equivalently Hi) is not full
column rank, then the estimate can lie anywhere in Null(H̃i) =

Null(Hi) (shifted by H̃+

i HT
i ⌃�1

ri ỹi). Thus, the component of xi that
lies in Null(Hi) cannot be estimated and only the component that
lies in Im(H̃i) = Im(HT

i ) can be estimated. Let Pi , H̃+

i H̃i denote
the projection operator on Im(H̃i). The estimation error and its
covariance in this subspace is:

ei = Pixi � Pix̂i = H̃+

i H̃ixi � H̃+

i HT
i ⌃�1

ri ỹi
= �H̃+

i HT
i ⌃�1

ri ri, and (24)

⌃ei = E[H̃+

i HT
i ⌃�1

ri rirTi ⌃�1
ri HiH̃+

i ]

= H̃+

i HT
i ⌃�1

ri HiH̃+

i = H̃+

i . (25)

Note that since the model in (22) is linear with Gaussian noise,
Pix̂i is the minimum-variance unbiased (MVU) estimate of xi

2 There are two reasons: (i) unknown attacks a which cannot be eliminated
without eliminating x (and thus, xi), and (ii) unknown dynamics and attacks of
other subsystems.
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projected on Im(HT
i ). Thus, the covariance ⌃ei captures the fun-

damental limit on how accurately Pixi can be estimated and is a
suitable metric to quantify privacy.

The privacy level of mechanism Mi in (4) is characterized by
two quantities: (i) rank(Si), and (ii) ⌃ei . Intuitively, if rank(Si) is
small, then Subsystem i shares fewer measurements and, as a
result, the component of xi that cannot be estimated ((I�H̃+

i H̃i)xi)
becomes large. Further, if ⌃ei is large (in a positive semi-definite
sense), this implies that the estimation accuracy of the compo-
nent of xi that can be estimated (H̃+

i H̃ixi) is worse. Thus, a lower
value of rank(Si) and a larger value of ⌃ei implies a larger level
of privacy. Based on this discussion, we next define an ordering
between two privacy mechanisms.

Consider two privacy mechanisms M(1)
i and M(2)

i , and let
ỹ(k)i , x̂(k)i , k = 1, 2 denote the limited measurements and estimates
corresponding to the two mechanisms. Further, let S(k)i ,H (k)

i , H̃ (k)
i ,

P (k)
i , ⌃

(k)
ei , k = 1, 2 denote the quantities defined above corre-

sponding to M(1)
i and M(2)

i .

Definition 1 (Privacy Ordering). Mechanism M(2)
i is more private

than M(1)
i , denoted by M(2)

i � M(1)
i , if

(i) Im
⇣
(S(2)i )T

⌘
✓ Im

⇣
(S(1)i )T

⌘
and,

(ii) ⌃ (2)
ei � P (2)

i ⌃ (1)
ei P (2)

i . ⇤
(26)

The first condition implies that ỹ(2)i is a limited version of ỹ(1)i
and is required for the ordering to be well defined. Under this
condition, Im(H (2)

i ) = Im(P (2)
i ) ✓ Im(H (1)

i ) = Im(P (1)
i ). Thus, the

estimated component P (2)
i x̂(2)i lies in a subspace that is contained

in the subspace of the estimated component P (1)
i x̂(1)i . For a fair

comparison between the two mechanisms, we consider the pro-
jection of P (1)

i x̂(1)i on Im(P (2)
i ), given by P (2)

i P (1)
i x̂(1)i = P (2)

i x̂(1)i .
Then, we compare its estimation error (given by P (2)

i ⌃
(1)
ei P (2)

i )
with the estimation error of P (2)

i x̂(2)i (given by ⌃
(2)
ei ) to obtain the

second condition in (26).

Example 1. Let xi 2 R2, Ci = I2, T = 1, and let

M(1)
i : ỹ(1)i = (xi + vi) + r̃ (1)i ,

M(2)
i : ỹ(2)i =

⇥
1 0

⇤
(xi + vi) + r̃ (2)i ,

with ⌃vi = ⌃
(1)
r̃i

= I2 and ⌃
(2)
r̃i

= ↵ � 0. Mechanism M(1)
i

shares both components of the vector yi (S
(1)
i = I2) whereas M(2)

i
shares only the first component (S(2)i = [1 0]), and both add some
artificial noise. The state estimates under the two mechanisms

(using (23)) are given by x̂(1)i = ỹ(1)i and x̂(2)i =


1
0

�
ỹ(2)i +


0 0
0 1

�
di.

Thus, under M(1)
i both components of xi can be estimated while

under M(2)
i , only the first component can be estimated. Further,

we have ⌃
(1)
ei = 2I2, ⌃

(2)
ei =

⇥
1+↵ 0
0 0

⇤
and P (2)

i =
⇥
1 0
0 0

⇤
. Thus,

the error covariances of the first component of xi under M
(1)
i and

M(2)
i are 2 and 1+↵, respectively, and M(2)

i is more private than
M(1)

i if ↵ � 1.
If ↵ < 1, then an ordering between the mechanisms cannot

be established. Under M(1)
i , both the state components can be

estimated but the estimation error in first component is large.
Under M(2)

i , only the first component can be estimated but its
estimation error is small. ⇤

An important property of the privacy mechanism in (4) is
that it exhibits an intuitive post-processing property. It implies
that further limiting the measurements produced by a privacy
mechanism cannot decrease the privacy of the measurements

(see also Katewa et al., 2020). This post-processing property also
holds in the differential privacy framework (Cortes et al., 2016).

5. Detection performance vs. privacy trade-off

In this section we present a trade-off between the attack
detection performance and privacy of the subsystems. As be-
fore, we focus on detection for Subsystem 1 and consider two
measurement sharing privacy mechanisms M(1)

j and M(2)
j for all

other subsystems j 2 S�1. Note that the trade-off is between the
detection performance of Subsystem 1 and the privacy level of all
other subsystems.

Theorem 5.1 (Relation Among the Detection Parameters of Privacy
Mechanisms). Let M(2)

j be more private than M(1)
j for all j 2 S�1.

Given any attack vector a, let q(k) and �(k) = aT⇤(k)a denote the
detection parameters under the privacy mechanisms

n
M(k)

j

o

j2S�1
,

for k = 1, 2. Then, we have

(i) q(1) � q(2) and,
(ii) �(2)µmax � �(1)

� �(2)µmin � �(2),
(27)

where µmax and µmin are the largest and smallest generalized eigen-
values of (⇤(1), ⇤(2)), respectively.

Proof. From (4), (8) and (9), for k = 1, 2, we have

H (k)
= IT ⌦ diag

⇣
S(k)2 C2, . . . , S

(k)
N CN

⌘
= S(k)

�1H,

⌃ (k)
vR

= S(k)
�1⌃vR (S

(k)
�1)

T
+ ⌃

(k)
r̃�1

> 0 where,

S(k)
�1 = IT ⌦ diag

⇣
S(k)2 , . . . , S(k)N

⌘
,

⌃
(k)
r̃�1

= IT ⌦ diag
⇣
⌃

(k)
r̃2

, . . . , ⌃
(k)
r̃N

⌘
� 0.

Since M(2)
j � M(1)

j for all j 2 S�1, conditions (26) imply

Im
⇣
(S(1)

�1)
T
⌘

◆ Im
⇣
(S(2)

�1)
T
⌘

) Im
�
(H (1))T

�
◆ Im

�
(H (2))T

�
.

From (10), we have H̃ (k) = (H (k))T(⌃ (k)
vR

)�1H (k). Since Null(H̃ (k)) =

Null(H (k)), from (13), it follows that
Im(M (1)) ◆ Im(M (2)). Recalling from (19) that q(k) = Rank
((M (k))TFa), it follows that q(1) � q(2).

Since Im(M (1)) ◆ Im(M (2)), M (2) = M (1)P for some full column
rank matrix P . Let Z , FT

x M (1)P . From (15):

⌃ (2)
vP

= (M (2))T⌃vLM
(2)

+ (M (2))TFx(H̃ (2))+FT
x M

(2),

= PT⌃ (1)
vP

P + ZT
[(H̃ (2))+ � (H̃ (1))+]Z| {z }

,E

. (28)

Next, we show that E � 0. Using M (2) = M (1)P , and using (13) for
both {M (k), H̃ (k)}, k = 1, 2, we have

ZT(H̃ (1))+H̃ (1)
= ZT(H̃ (2))+H̃ (2), and thus (29)

E = ZT
[(H̃ (2))+ � (H̃ (1))+H̃ (1)(H̃ (1))+H̃ (1)(H̃ (1))+]Z

=ZT
[(H̃ (2))+ � (H̃ (2))+H̃ (2)(H̃ (1))+(H̃ (2))+H̃ (2)

]Z (30)

where the last inequality follows from (29) and the fact that
H̃ (k)(H̃ (k))+ = (H̃ (k))+H̃ (k). Next, we have

H̃ (k)
= IT ⌦ diag

h
(S(k)2 C2)T(S

(k)
2 ⌃v2 (S

(k)
2 )T + ⌃

(k)
r̃2

)�1S(k)2 C2,

· · · , (S(k)N CN )T
⇣
S(k)N ⌃vN (S

(k)
N )T + ⌃

(k)
r̃N

⌘�1
S(k)N CN

i

= ⇧Tdiag
h
IT ⌦ (S(k)2 C2)T(S

(k)
2 ⌃v2 (S

(k)
2 )T + ⌃

(k)
r̃2

)�1S(k)2 C2,

6
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· · · , IT ⌦ (S(k)N CN )T
⇣
S(k)N ⌃vN (S

(k)
N )T + ⌃

(k)
r̃N

⌘�1
S(k)N CN

i
⇧

= ⇧Tdiag
h
H̃ (k)

2 , . . . , H̃ (k)
N

i
⇧ and, (31a)

(H̃ (k))+ = ⇧Tdiag
h
(H̃ (k)

2 )+, . . . , (H̃ (k)
N )+

i
⇧, (31b)

where ⇧ is a permutation matrix with ⇧�1 = ⇧T. Substituting
(31a) and (31b) in (30), we have

E = ZT⇧Tdiag
h
(H̃ (2)

2 )+ � P (2)
2 (H̃ (1)

2 )+P (2)
2 , . . .

(H̃ (2)
N )+ � P (2)

N (H̃ (1)
N )+P (2)

N

i
⇧Z

(a)
� 0,

where (a) follows from the second condition in (26) for all j 2 S�1.
Next, from (19), we have,

⇤(2)
= FT

a M
(2)(⌃ (2)

vP
)�1(M (2))TFa

(28)
= FT

a M
(1)P(PT⌃ (1)

vP
P + E)�1PT(M (1))TFa

(b)
 FT

a M
(1)(⌃ (1)

vP
)�1(M (1))TFa = ⇤(1),

) �(1)
= aT⇤(1)a � aT⇤(2)a = �(2),

where (b) follows from: (i) Lemma A.2, (ii) E � 0, and (iii) P is full
column rank. Finally, the second condition in (27) follows from
Lemma A.3, and proof is complete. ⌅

Theorem 5.1 shows that when the subsystems j 2 S�1 share
measurements with Subsystem 1 using more private mecha-
nisms, both the number of processed measurements and the SNR
reduce. This has implications on the detection performance of
Subsystem 1, as explained next. To compare the performance cor-
responding to the two sets of privacy mechanisms, we select the
same false alarm probability PF for both the cases and compare
the detection probability. Theorem 5.1 and Lemma 3.2 imply that
PD(q(2), �(2), PF ) can be greater or smaller than PD(q(1), �(1), PF )
depending on the actual values of the detection parameters. In
fact, ignoring the dependency on PF since it is same for both cases,
we have

PD(q(2), �(2)) � PD(q(1), �(1)) =

PD(q(2), �(2)) � PD(q(2), �(1))| {z }
0

+ PD(q(2), �(1)) � PD(q(1), �(1)).| {z }
�0

Intuitively, if the decrease in PD due to the decrease in the SNR3
(�(1) ! �(2)) is larger than the increase in PD due to the decrease
in the number of measurements (q(1) ! q(2)), then the detection
performance decreases.

Theorem 5.2 (Less Privacy Does Not Always Guarantee More
Security). Consider the setup in Theorem 5.1 with M(1)

j less private
than M(2)

j for all j 2 S�1. Let the detection probability of Subsystem
1 be as in (21). Then, given PF , PD(q(1), �(1), PF ) � PD(q(2), �(2), PF )
may not hold.

This is an interesting and counter-intuitive trade-off between
the detection performance and privacy/information sharing. It
implies that sharing less information can lead to a better detec-
tion performance. This phenomenon occurs because the GLRT for
the considered hypothesis testing problem is a sub-optimal test,
as discussed before.

Next, we show that this counter-intuitive phenomenon does
not occur if the subspace of the measurements shared by the
privacy mechanisms is fixed, and the privacy level is varied with
the noise level. In this case, a strict trade-off between privacy and
detection performance exists.

3 The SNR depends upon the attack vector a (via (19)), which we do not
know a-priori. Thus, the SNR can take any positive value.

Corollary 5.3 (Strict Security-privacy Trade-off). Consider two pri-
vacy mechanisms M(2)

j � M(1)
j such that Im

⇣
(S(2)j )T

⌘
= Im

⇣
(S(1)j )T

⌘
for j 2 S�1. Let (q(k), �(k)) denote the detection parameters

of Subsystem 1 under the privacy mechanisms
n
M(k)

j

o

j2S�1
, for k =

1, 2. Then, for any given PF , we have

PD(q(2), �(2), PF )  PD(q(1), �(1), PF ).

Proof. Since the mechanisms share the same subspace of mea-
surements, q(1) = q(2) and �(1) � �(2) follow from the proof of
Theorem 5.1. The result then follows from Lemma 3.2. ⌅

6. Simulation example

Consider an interconnected system with N = 3 subsystems
with the following parameters:

A1 =
1
3

2

64

�1 �16 2 �4
0 �6 1 �1
0 2 1 1
1 28 �3 6

3

75 , A12 =

2

64

0 0 0
0 0 0
0 1 2
1 0 0

3

75 ,

A13 =

2

64

0 0
1 0
0 2
0 0

3

75 , B1 =

2

64

1 0
0 1
0 0
0 0

3

75 , C1 =

"1 0 0 0
0 1 0 0
0 0 1 0

#
,

A�1 =
⇥
A12 A13

⇤
, ⌃x1(0) = 0.2I4, ⌃w1 = 0.1I4, C2 = I3,

C3 = I2, ⌃v1 = ⌃v2 = I3, ⌃v3 = I2, T = 2.

We focus on attack detection for Subsystem 1, where Subsystems
2 and 3 use privacy mechanisms to share their measurements
with Subsystem 1. We consider the following three cases for
Subsystems 2 and 3:

• M(0) = {M(0)
2 ,M(0)

3 }: Subsystems 2 and 3 do not use
any privacy mechanisms and share actual measurements,
i.e., S2 = I3, S3 = I2, ⌃r̃2 = 0, ⌃r̃3 = 0.

• M(1): S2 =
⇥
1 0 0
0 1 0

⇤
, S3 = I2, ⌃r̃2 = 0, ⌃r̃3 = I2.

• M(2): S2 =
⇥
1 0 0
0 1 0

⇤
, S3 = [ 0 1 ] , ⌃r̃2 = 0, ⌃r̃3 = 1.8.

It can be easily verified that the following privacy ordering holds:
M(2) > M(1) > M(0). Recall that the detection performance
is completely characterized by PF and the detection parameters
(q, �). We choose PF = 0.05 for all the cases. Let (q(k), �(k)), k =

0, 1, 2 denote the detection parameters for the above three cases.
Recall that the parameter q depends only the system parameters,
whereas the parameter � depends on the system parameters as
well as the attack values. For the above cases, we have q(0) =

6, q(1) = 4 and q(3) = 2. Recalling (19), the value of �(k) = aT⇤(k)a
can lie anywhere between [0, 1) depending on the attack value
a. Thus, for simplicity, we present the results in this section in
terms of �(k).

We aim to compare the detection performance of case 0 with
cases 1 and 2, respectively. We are interested in identifying the
ranges of the detection parameters for which one case performs
better than the other. As mentioned previously, the parameters
q(k) are fixed for the three cases, so we compare the performance
for different values of the parameter �(k). Fig. 3 presents the per-
formance comparison of case 0 with case 1 (Fig. 3(a)) and case 2
(Fig. 3(a)). Any point (x, y) in the colored regions are achievable
by an attack, i.e., there exists an attack a such that aT⇤(k)a =

x and aT⇤(0)a = y, whereas the white region is inadmissible
(see (27)). The blue region corresponds to the pairs (�(k), �(0)) for
which case 0 performs better than case k, i.e., PD(q(0), �(0), PF ) �

PD(q(k), �(k), PF ) for k = 1, 2. In the red region, case k performs
better that case 0, k = 1, 2.
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Fig. 3. Comparison between detection performance of case 0 with: (a) case 1,
and (b) case 2. In the blue region, case 0 performs better than case0/case 1, and
vice versa in red square region. Since �(0) � �(k) for k = 1, 2 (cf. Theorem 5.1),
the white region is inadmissible. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

Fig. 4. Detection performance for varying level of noise.

We observe that case 0 performs better than case k if �(0)

�(k)
is

large, and vice versa. This shows that if the attack vector a is such
that �(0)

�(k)
is small, then the detection performance corresponding

to a more private mechanism (M(k) > M(0)) is better. This
implies that there is a non-strict trade-off between privacy and
detection performance. This counter-intuitive result is due to the
suboptimality of the GLRT used to perform detection, as explained
before. Further, we observe that the red region of Fig. 3(b) is
larger than (and contains) the red region of Fig. 3(b) because M(2)

is more private than M(1).
Finally, we consider the case where Subsystems 2 and 3 im-

plement their privacy mechanisms by only adding artificial noise
in (4). Thus, S2 = I3, S3 = I2, and the artificial noise covariances
are given by ⌃r̃2 = � 2I3 and ⌃r̃3 = � 2I2. The attack value is
ã(k) = [1, 1]T for k = 1, 2. Clearly, as the noise level � increases,
the privacy level also increases. Fig. 4 shows the detection per-
formance of Subsystem 1 for varying noise level � . We observe
that the detection performance is a decreasing function of the
noise level (cf. Corollary 5.3), implying a strict trade-off between
detection performance and privacy in this case.

7. Conclusion

We study an attack detection problem in interconnected dy-
namical systems where each subsystem is tasked with detection
of local attacks without any knowledge of the dynamics of other
subsystems and their interconnection signals. The subsystems
share measurements among themselves to aid attack detection,
but they also limit the amount and quality of the shared measure-
ments due to privacy concerns. We show that there exists a non-
strict trade-off between privacy and detection performance, and
in some cases, sharing less measurements can improve the detec-
tion performance. We reason that this counter-intuitive result is
due the suboptimality of the considered �2 test.

Future work includes exploring if this counter-intuitive trade-
off exists for alternative detection schemes (for ex., unknown-
input observers) and for other types of statistical tests. Also,
privacy ordering of two mechanisms irrespective of their sub-
spaces of shared measurement will be defined using suitable
weighing matrix for each subspace.

Appendix. Auxiliary Results (for proofs, see Katewa et al. (2020))

Lemma A.1. The optimal solutions of the weighted least squares
problem: min

x
J(x) = (y�Hx)T⌃�1(y�Hx), with ⌃ > 0 are given

by

x⇤
= H̃+HT⌃�1y + (I � H̃+H̃)d, (32)

where H̃ = HT⌃�1H, and d is any real vector of appropriate
dimension. Further, optimal value of the cost is

J(x⇤) = yT(⌃�1
� ⌃�1HH̃+HT⌃�1)y. (33)

Lemma A.2. Let ⌃ > 0 2 Rn⇥n, ⌃a � 0 2 Rm⇥m, with m  n,
and let S 2 Rn⇥m be full (column) rank. Then,

⌃�1
� S(ST⌃S + ⌃a)�1ST. (34)

Lemma A.3. Let M1 � M2 � 0, � � 0 and let J(x) = xTM1x. Then,
the maximum and minimum values of J(x) subject to xTM2x = �
are given by �µmax and �µmin respectively, where µmax and µmin
are the largest and smallest generalized eigenvalues of (M1,M2),
respectively.
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