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Abstract— In this paper we study a security problem for

resource-constrained autonomous systems. We consider a UAV

tasked with tracking a reference trajectory, and an attacker

capable of compromising the measurements taken at certain

sensors. We consider a probabilistic attack model, where the

attacker executes denial of service attacks against a subset

of sensors based on a Bernoulli process. We assume that

sensors have different accuracy, reliability, and require different

computational times to be activated. Our approach is based on

the formalism of Markov Jump Linear Systems. We develop

and numerically validate an optimal security countermeasure

that probabilistically selects which sensor to use at different

time instants, so as to balance performance and security, and

ultimately minimize the UAV’s expected tracking error.

I. INTRODUCTION

Cyber-physical systems in general, and autonomous robots
in particular, are prone to a variety of failures and intentional
attacks. Recent studies and incidents have demonstrated
how GPS jamming, compromising message integrity, and
denial of service attacks, among others, can deteriorate the
performance of a cyber-physical system often impeding a
controller to restore nominal operation [1], [2]. While attack
detection and identification methods have been proposed for
a variety of scenarios [3], the problem of ensuring satis-
factory performance in an unsecured environment remains
largely unsolved.

Ensuring security and satisfactory performance in real-
time and resource-constrained cyber-physical systems is in-
creasingly challenging because the platform can reserve only
limited computational resources and time for security and
control purposes [4]. In such scenarios, the control and
security tasks usually compete with each other for limited
resources. Therefore, besides being computationally efficient,
viable security algorithms must coordinate with the control
algorithm to schedule and divide the resources among them
in an optimal manner. Through this study, we aim to char-
acterize this optimal trade-off between security and control
performance.

In this paper, we propose and evaluate a security method
for a resource-constrained Unmanned Aerial Vehicle (UAV).
UAVs are being increasingly used in military and civilian
scenarios for a wide variety of applications such as surveil-
lance, reconnaissance among others. For these applications,
the UAV needs to estimate its position over time. These
estimates are typically provided by an on-board Global
Positioning System (GPS) unit and are then used to perform a
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desired control task, such as hovering or trajectory tracking.
The measurements provided by the GPS are accurate and
require limited computational resources [5]. Besides the GPS
unit, the UAV is also usually equipped with a secondary
sensor(s) that can provide position information. For instance,
the UAV can have an on-board vision camera that takes
ground images and processes them to detect certain features
on the ground. It then compares these features with an
environment map (we assume that UAV knows the map) to
estimate its position [4], [6].

Due to ambient light conditions and map variations, the
position estimates provided by the camera are usually less
accurate when compared to the GPS unit [4], [6]. Further,
obtaining the estimates from the camera involves the use of
image processing and feature extraction algorithms, which
require significant computational resources [7]. Usually, the
UAV has limited computational capabilities due to hardware
limitations and as a result, the secondary measurements are
delayed or not available at every time instant. Due to these
limitations, secondary sensors are preferred less and the
measurements are obtained using the GPS.

However, a drawback of using the GPS estimates is that
it is susceptible to attacks by an adversary. For example,
an attacker can cause a Denial of Service (DoS) attack by
transmitting a jamming signal which prevents the UAV from
obtaining the GPS measurements. These attacks may signif-
icantly affect the control task of the UAV, and in extreme
scenarios can lead to catastrophic events like UAV crash [8].
In such scenarios, secondary sensors can be leveraged to
mitigate the adverse effects of the attacks. Although they
have limitations described above, they are secure and can
be useful in presence of such attacks. In this paper, we
address the issue of how to use these two sensors in an
optimal manner such that the adverse effects of the attack
are minimized.
Related Work Analysis and detection of DoS attacks in
cyber-physical systems is a rich field and it has been studied
in deterministic [3] and stochastic settings [1], [2]. In [2],
the authors present an optimal linear control in presence
of random DoS attacks. In [1], an optimal jamming attack
policy is derived that causes maximum system degradation.
There have also been numerous studies on sensor selec-
tion/scheduling problems for estimation, both for stochastic
[9] and deterministic [10] policies. The work closest to
our paper is [9], wherein an optimal Markov stochastic
policy is derived numerically that minimizes the estimation
error. However, our problem deals with security against DoS
attacks and studying the security vs performance trade-off.
We use the theory of Markov Jump Linear Systems (MJLS),
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which is an advanced field (see [11] and references therein).
The main contributions of the paper are as follows. We

study the trade-off between security and control performance
in a resource-constrained UAV in presence of DoS attacks.
We formalize this trade-off as a stochastic sensor selection
problem based on an underlying Markov chain which models
the attacks and sensor computational times. We consider a
LQG tracking problem and solve it to obtain the optimal
control laws and characterize the tracking performance of
the UAV. Finally, using numerical techniques, we obtain the
optimal sensor selection policy that minimizes the expected
tracking error.
Notations A positive definite (positive semi-definite) matrix
is denoted by Q > 0(Q � 0). For x 2 Rn and Q � 0,
||x||2Q , x

T
Qx. IN denotes the N ⇥ N identity matrix.

0N⇥M 2 RN⇥M
, 0n 2 Rn(1N⇥M , 1n) denote the all zero

(one) matrix. y
j
i denotes the sequence yi, yi+1, · · · , yj for

i  j and y
1
i denotes the infinite sequence yi, yi+1, · · · .

II. SYSTEM AND ATTACK MODEL

Consider a UAV equipped with two sensors - a GPS
receiver and a vision camera, denoted by S1 and S2, re-
spectively. Although the dynamics of the UAV is non-linear
and evolves in continuous time, for the purpose of this
paper we consider the operation of the UAV in the vicinity
of an equilibrium point via linearization. Further, since the
control signal to the UAV is applied at discrete time instants,
we discretize the continuous-time dynamics. The details of
UAV model, linearization and discretization are presented
in subsection V-A. The resulting discrete-time linear time-
invariant (LTI) system is denoted as

x(k + 1) = Ax(k) + Bu(k) + w(k), (1)

where x 2 Rn, and u 2 Rl are the state and control input,
respectively and w(k) is an i.i.d. Gaussian process noise with
zero mean and variance W > 0. The initial condition x(0) =
x0 is Gaussian with zero mean and variance X0 � 0.

We model the measurements provided by the GPS and
camera sensor as a linear function of the state corrupted by
additive Gaussian noise. Although more detailed/non-linear
measurement models may exist, we focus on the linear model
in this paper. The measurements obtained by S1 (GPS) are
thus given by

y1(k) = Cx(k) + V1v(k), (2)

where y1 2 Rb. v(k) 2 Rb is the measurement noise, which
is i.i.d. Gaussian with zero mean and variance Ib, and V1 > 0.
Thus, the effective noise variance for the GPS is V1. We
assume that the initial condition x0, and the noises w(k) and
v(k) are independent of each other. We make the following
assumption on the linearized UAV model.
A1) (A, B) is controllable and (A, C) is observable [12].

As discussed in the introduction, obtaining measurements
from S2 (camera) requires significant computational re-
sources. Due to computational limitations of the UAV, it
results in high processing time and limited measurements.

We model this fact by assuming that S2 requires D + 1
time steps to provide a single measurement where D � 0
is the wait time in obtaining the measurement. Note that
the wait time does not correspond to a delay in receiving
the measurements. The measurements are not delayed, rather
they are provided once every D + 1 time steps:

y2(k) =

(
Cx(k) + V2v(k), k = m(D+1), m = 1, 2, . . . ,

�y, otherwise,
(3)

where �y denotes that measurement is not received (which
is equivalent to receiving pure noise). We assume that the
two sensor clocks are synchronized. Further, we model the
fact that the position estimates provided by the camera are
less accurate than the GPS by assuming that
A2) V1 < V2, i.e. the camera measurements (when obtained)

are more noisy than the GPS measurements.
Moreover, due to significant processing time and memory
requirements in obtaining the measurement from S2, we
assume that:
A3) During the D-wait time period in S2, sensor S1 cannot

be used to take a measurement.
This implies that at any given time instant, only one sensor
can be used.
Control Task The control objective of the UAV is to
track a pre-specified reference trajectory denoted by d

1
0 =

d0, d1, . . . There are a variety of control techniques to
perform trajectory tracking [4], including Linear-Quadratic
Gaussian (LQG) control, H1 control, and model predictive
control. In this paper we focus on LQG-based tracking
problem and present its detailed analysis and solution later
in Section IV. Note that in determining the optimal control
inputs, the controller needs to estimate the state of the UAV
using the noisy measurements. We can readily observe from
(2), (3) and Assumption A2 that sensor S1 will provide more
accurate estimates when compared to S2. Thus, if S1 and
S2 are equally reliable, S1 will be used at each time instant
to receive the measurements. However, this is not true in
presence of attacks, as described next.
Attack Model We consider Denial-of-service (DoS) attacks
in which the attacker jams the GPS signal received by
the UAV. In practice, the degradation due to DoS attacks
is incremental w.r.t. the attack intensity, until a critical
threshold beyond which the measurements are not received.
We consider only this extreme case, assuming that when the
attack is in progress no measurements are available from the
GPS sensor. The attack process is denoted by {ak}, where
ak = 1 (respectively (ak = 0)) implies that the attack is
in progress (respectively not in progress) at time k. The
measurements from S1 under the attack model are denoted
by y

a
1 , and can be described as

y
a
1 (k) =

(
y1(k), if ak = 0,

�y, if ak = 1.
(4)

We consider a stochastic attack model where {ak} is an
i.i.d. Bernoulli random process with parameter ↵. Thus,
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P(ak = 1) = ↵ is the probability of attack at time instant k.
Many applications in control, communication and computer
networks deal with Bernoulli packet drops. Therefore, al-
though different/more sophisticated DoS attack models may
be possible, we focus on this simplistic model for the paper.
The attacker can choose the attack probability ↵ based on the
extent of desired system degradation and its willingness to
get detected. Moreover, the UAV can estimate ↵ empirically
based on the number of measurements received in a given
time window. Finally, we assume that the camera sensor S2

is secure against the attacks.
Unlike in the absence of attacks, using S1 at all times

may result in considerable degradation of the tracking per-
formance, particularly when the the attack probability is high.
On the other hand, using S2 may not be desirable if the wait
time D in obtaining the measurements is large or V1 ⌧ V2.
Thus, a security policy is needed to select among the two
sensors in an optimal manner over time so as to maximize
the UAV’s tracking performance.

III. SENSOR SELECTION POLICY

In this section, we describe the sensor selection policy
which determines which sensor to use and when. We then
characterize the system performance for the given policy in
terms of the expected LQG tracking cost.

Note that due to assumption A3, we cannot use both
the sensors at the same time and this rules out any sensor
fusion techniques. We consider a stochastic sensor selection
policy in which, at each time instant, one of the two
sensors is randomly selected according to a given probability
distribution. This distribution is drawn from an underlying
time-homogeneous Markov Chain (MC) as described in
Fig. 1. States 1 and 2 of the MC correspond to sensor
S1 being in the state of no-attack and attack, respectively.
States 3, 4, . . . , D + 3 correspond to sensor S2. Recall that
sensor S2 requires a processing time of D + 1 to provide
a measurement. This D-wait period is modelled by states
3, 4, . . . , D + 2 in which no measurement is received. After
the wait period, S2 finally provides a measurement in state
D + 3. Assumption A3 implies that switching from S2 to
S1 is not allowed during the wait period (i.e. from states
3, 4, . . . , D + 2). After S2 provides a measurement in state
D +3, we can either switch to S1 at the next time instant or
select S2 again. If S1 is selected, the MC enters state 1 or
2 depending on the absence/presence of attack. On the other
hand, if S2 is selected, it provides the next measurement
after a wait time of D, and the policy continues. The overall
transition probabilities from sensor S1 to sensor S2, and vice-
versa are denoted by p and q, respectively.

Remark 1: (Alternative sensor selection policies) One
may also consider alternative sensor selection policies, for
example, a deterministic policy that periodically switches
between the two sensors. However, because we focus on
probabilistic attacks, stochastic policies are a natural choice.
Further, stochastic policies are easy to implement and typ-
ically more tractable to optimize when compared to deter-
ministic policies [9]. ⇤

(1�p)(1�↵)

(1�p)(1�↵)

(1�p)↵

(1�p)↵
p

q↵

q(1�↵)

p

1 1 1

11�q

D+3

1

2

3 4 D+2

S2

S1

Fig. 1: Markov chain representation for the sensor selection policy.
Measurements are received only in blue states.

Let M and rk denote the Markov chain and its random
state at time instant k, respectively. Let M , {1, 2, · · · , D+
3} be the state space of M, and let m = D + 3 denote its
total number of states. The transition probability matrix of
M is denoted by P = [pij ] 2 Rm⇥m, where pij , P(rk+1 =
j/rk = i) denotes the probability of transition from state i

to j. From Fig. 1, we have

P =

2

664

(1 � p)(1 � ↵) (1 � p)↵ p
02⇥D(1 � p)(1 � ↵) (1 � p)↵ p

0D⇥3 ID

q(1 � ↵) q↵ 1 � q 0TD

3

775 . (5)

Note that the Markov chain is completely specified by the
parameters {p, q,↵, D}.

Let ⇡i(k) , P(rk = i) be the probability of the
Markov chain being in state i at time k and let ⇡(k) =
[⇡1(k),⇡2(k), · · · ,⇡m(k)]T. Then, ⇡(k) = (PT)k⇡0, where
⇡0 is the initial distribution of M. It can be easily observed
that M is irreducible and aperiodic for all values of 0 <

p < 1, 0 < q < 1, and 0  ↵  1, and therefore it is
ergodic. Thus, a stationary distribution exists and is denoted
by ⇡i , lim

k!1
⇡i(k).

Remark 2: (Generalization for multiple sensors) Our
framework (UAV model and the MC) is not restrictive to two
sensors and can be easily generalized to include scenarios
with more than two sensors and with any combination
of attacks/wait times affecting them. However, for ease of
understanding, we present our results for two sensor case.⇤

Since the sensor switching policy is Markovian and the
sensor attacks and wait times are incorporated into the
Markov chain, our system belongs to the general class of
Markovian Jump Linear Systems (MJLS) [11], and it can be
described as

x(k + 1) = Ax(k) + Bu(k) + w(k),

y(k) = Crkx(k) + Rrkv(k),
(6)

where Crk , Rrk depend on the state rk of M. Recall that
measurements are received only in states 1 (from sensor S1)
and m (from sensor S2). Thus, C1 = Cm , C 2 Rb⇥n
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and R1 = V1, Rm = V2. Further, no measurements (�y)
are received in states 2, 3, · · · , m � 1. We model this by
letting Ci = 0b⇥n, and Ri = �

2
Ib for i = 2, 3, · · · , m � 1,

where �2
>> 1. In other words, absence of measurement is

equivalent to receiving a measurement containing only noise.
Next, we study the LQG problem for trajectory tracking and
obtain the optimal control inputs and the tracking cost.

IV. TRAJECTORY TRACKING VIA LQG CONTROL

In this section, we formally define the LQG tracking
problem and solve it to obtain the optimal control inputs
and the resulting tracking cost in terms of the transition
probabilities p and q. The control task of the UAV is to track
the reference trajectory d

1
0 by applying appropriate inputs.

We make the following assumption:
A4) The reference trajectory d

1
0 is bounded.

To design the control inputs, we assume that the controller
has access to past inputs, Markov chain states, measurements
and the reference trajectory. Let this information be denoted
by Ik , {y

k�1
0 , r

k�1
0 , u

k�1
0 , d

k+1
0 }, and let Uk denote the

class of control inputs at time k which use the information
Ik in determining the control values. Then, the optimal
trajectory tracking problem can be defined as the following
infinite-horizon LQG minimization problem:

min
u1
0 ,p,q

J(p, q, u
1
0 )

, lim sup
T!1

1

T
E
"

TX

k=0

||x(k) � dk)||2Q + ||u(k)||2R

#
, (7)

s.t. 0  p  1, 0  q  1, u(k) 2 Uk,

where dk is the reference at time step k, Q > 0 and R > 0
are the weighing matrices for the tracking error and input
magnitude, respectively, and the expectation is taken with
respect to the process noise w

T
0 , the measurement noise

v
T
0 and Markov process r

T
0 . Notice that the cost J in (7)

depends on the parameters p, q,↵, D. However, we highlight
its dependence only on the transition probabilities p and q

because these are our design parameters.
It can be easily observed that the minimization in (7)

can be performed in two steps. First, we obtain the optimal
control laws that minimize the cost for any given p and q,
since the choice of optimal control law is independent of the
transition probabilities. Next, we minimize the residual cost
with respect to p and q to obtain the optimal selection policy.

Consider a Markov chain with given transition probabil-
ities p and q, attack probability ↵ and wait time D. To
obtain the infinite-horizon optimal inputs, we first solve the
following finite-horizon LQG tracking problem

min
uN
0

JN (p, q, u
N
0 ) , E

h NX

k=0

⇥
||x(k) � dk||2Q + ||u(k)||2R

⇤

+ ||x(N + 1) � dN+1||2QN+1

i
, (8)

s.t. u(k) 2 Uk,

where QN+1 > 0 denotes the terminal cost. Since the
measurements are noisy, the controller implements a Kalman

Filter (KF) to calculate the state estimates. Let the Minimum
Mean Square Error (MMSE) estimate of state x(k) computed
by the KF based on the information Ik be denoted by
x̂(k). Further, let ⇧k(p, q) , E[||x(k) � x̂(k)||2] denote the
estimation error covariance, where the expectation is taken
with respect to to w

k�1
0 , v

k�1
0 , r

k�1
0 . Note that the estimation

error covariance also depends on the attack probability ↵

and wait time D. However, we omit that dependence in the
notation of ⇧k.

Although the LQG tracking problem is well studied in
literature [13], a consolidated result for MJLS is lacking.
Thus, for completeness, we present the result and its proof
using dynamic programming technique.

Lemma 4.1: (Finite-horizon optimal control) Consider
the MJLS in (6). The optimal control inputs that minimize
the cost in (8) are given by

u
⇤
N (k) = �L

�1
k+1B

T(Sk+1(Ax̂(k) � dk+1) + qk+1),

where Sk evolves according to the following backward
Riccati recursion

Sk = A
T
Sk+1Zk+1A + Q, where (9)

Zk+1 , In � BL
�1
k+1B

T
Sk+1, Lk+1 , B

T
Sk+1B + R,

(10)

SN+1 = QN+1, and qk follows the backward recursion

qk = A
T
Z

T
k+1(qk+1 + Sk+1d̃k+1), where

d̃k+1 = Adk � dk+1,
(11)

with qN+1 = 0n. Further, the resulting optimal cost is

J
⇤
N (p, q) = tr(S0X0) + d

T
0 S0d0 � 2q

T
0 d0 + c0

+
N+1X

k=1

tr(Y T
k LkYk⇧k�1(p, q)) + tr(SkW ),

where Yk , L
�1
k B

T
SkA, (12)

and c0 is given by the following backward recursion

ck�1 = ck � q
T
kBL

�1
k B

T
qk + d̃

T
kSkZkd̃k + 2q

T
kZkd̃k,

(13)

with cN+1 = 0.
Proof: With x̃(k),x(k)�dk, (6) can be rewritten as

x̃(k + 1) = Ax̃(k) + Bu(k) + d̃k+1 + w(k). (14)

We prove the result by following the standard dynamic
programming arguments. The cost-to-go at time t for the
cost function in (8) is

JN (t, uN
t ) , E

"
NX

k=t

⇥
||x̃(k)||2Q + ||u(k)||2R

⇤

+ ||(x̃(N + 1)||2QN+1

#
.

Let the optimal value of cost-to-go (by applying optimal
inputs u

⇤
N (t), · · · , u

⇤
N (N)) be of the following form

J
⇤
N (t) = E[||x̃(t)||St + 2q

T
t x̃(t) + ct] + �t,
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for some �t > 0. Then, we have

J
⇤
N (t � 1) = min

u(t�1)
||x̃(t � 1)||2Q + ||u(t � 1)||2R + J

⇤
N (t).

Using (14) and after some tedious but straightforward ma-
nipulations, we get

J
⇤
N (t � 1) = min

u(t�1)
E
h
||u(t � 1)

+ L
�1
t B

T{St(Ax̃(t � 1) + d̃t) + qt)}||Lt + ||x̃(t � 1)||St�1

+ 2q
T
t�1x̃(t � 1) + ct�1

i
+ E[||w(t � 1)||St ] + �t,

where Lt, St�1, qt�1, ct�1 are given by (10), (9),(11), (13).
The above cost expression can be minimized by choosing

u
⇤
N (t � 1) = �L

�1
t B

T{St(Ax̂(t � 1) � dt) + qt),

and the resulting cost is given by

J
⇤
N (t � 1) = E[||x̃(t � 1)||St�1 + 2q

T
t�1x̃(t � 1) + ct�1]

+ tr(Y T
t LtYt⇧t�1(p, q)) + tr(StW ) + �t| {z }

�t�1

,

where Yt is given in (12). Following the recursions, the
optimal cost is given by J

⇤
N (0) and proof is complete.

Note that the Riccati recursion in (9) evolves indepen-
dently of the reference trajectory. On the other hand, the
recursions in (11) and (13) depend on the reference trajec-
tory. As a result, c0 and q0 (and thus, the optimal cost) are
dependent on the reference trajectory. Next, we generalize
the finite-horizon result to obtain the optimal cost for the
infinite-horizon tracking problem in (7).

Lemma 4.2: (Infinite-horizon optimal control) Consider
the MJLS in (6) and the infinite-horizon optimization prob-
lem in (7). Assume that lim

k!1
⇧k(p, q) , ⇧(p, q) exists and

is finite. Let �k , �q
T
kBL

�1
k B

T
qk + d̃

T
kSkZkd̃k +2q

T
kZkd̃k

and c = sup{||�k|| : k � 0}. Then,

u
⇤(k) = �L

�1
B

T(S(Ax̂(k) � dk+1) + qk+1), (15)
J
⇤(p, q)  J̄

⇤
1(p, q) , c + tr(Y T

LY ⇧(p, q)) + tr(SW ),
(16)

where {S, L, Z, Y } denote the steady state values of
{Sk, Lk, Zk, Yk} in (9), (10), (12).

Proof: Since (A, B) is controllable, the Riccati recur-
sion in (9) converges and {Sk, Lk, Zk, Yk} are bounded for
all k � 0. Further, due to assumption A4, d̃k is bounded for
k � 1. Moreover, since the closed loop matrix AZk is stable
for optimal LQG control [14], the recursion in (11) results
in bounded qk for k � 0. Thus, lim

N!1
1
N q0 = 0n. Also, �k is

bounded for all k � 0 and therefore, c is finite and c0  cN .
The result then follows from J

⇤(p, q) = lim sup
N!1

1
N J

⇤
N (p, q).

Remark 3: (Optimal sensor selection policy is indepen-

dent of reference trajectory) The upper bound in (16) is
a result of the fact that �0

ks do not converge and thus,
lim

N!1
1
N c0 does not exist for an arbitrary bounded reference

trajectory. Furthermore, the cost J̄
⇤
1(p, q) depends on the

sensor selection policy only through the steady state esti-
mation error covariance ⇧(p, q). Thus, we can state that
the optimal sensor selection policy is independent of the
reference trajectory. ⇤

Next, we characterize the estimation error covariance of
the MJLS. For clarity of presentation, we drop the notational
dependence of ⇧k on p, q. Let ⇧̃k denote the estimation error
covariance for a given realization of Markov chain sequence
r
k�1
0 , i.e. ⇧k = E[⇧̃k] where the expectation is with respect

to the sequence r
k�1
0 . Since the Kalman filter has access to

the states of the Markov chain rk, the estimates x̂(k) and
the estimation error covariance ⇧̃k evolve according to the
following time-varying Kalman Filter [11], [9]

x̂(k + 1) = A[x̂(k � 1) + Kk(y(k) � Crk x̂(k � 1))]

+ Bu(k), (17)
⇧̃k+1 = A⇧̃kA

T + W � A⇧̃kC
T
rk L̃

�1
k Crk⇧̃kA

T
, (18)

where L̃k , Crk⇧̃kC
T
rk + Rrk , Kk , ⇧̃kC

T
rk L̃

�1
k ,

(19)

with x̂(0) = 0 and ⇧̃0 = P0 = X0.
Since ⇧̃k depends on all the past realizations r

k�1
0 , the

exact characterization of ⇧k = E[⇧̃k] is intractable. There-
fore, we use an upper bound on ⇧k presented in [9], and
restate the result.

Lemma 4.3: (Upper bound on estimation error covari-

ance [9]) Let ⇧̄i(k) 2 Rn⇥n be positive-definite for i =
{1, 2, · · · , m}, k � 0 and evolve as

⇡j(k)⇧̄j(k + 1) =
mX

i=1

pij⇡i(k � 1)gj(⇧̄i(k)) with, (20)

⇧̄j(1) � gj(X0) where,
gj(X) = AXA

T + W�AXC
T
j (CjXC

T
j + Rj)

�1
CjXA

T
,

(21)

Then, ⇧k  ⇧̄k , Pm
i=1 ⇡i(k � 1)⇧̄i(k) for k � 1.

Proof: See [9], Theorem 5.
We assume that the recursion in (20) converges and let the
steady state value of the bound be denoted by ⇧̄(p, q) ,Pm

i=1 ⇡i⇧̄i. The bound satisfies the steady state equations

⇡j⇧̄j =
mX

i=1

pij⇡igj(⇧̄i) j = 1, 2, · · · , m. (22)

For a sufficient condition on convergence, see the discussion
in [9], [15]. The bound on the estimation error covariance
induces an upper bound on the infinite-horizon LQG cost.
Using (16) and trace properties, the upper bound is given by

J
⇤(p, q)  J̄

⇤(p, q) , c + tr(SW )

+ �max(Y
T
LY )tr(⇧̄(p, q)). (23)

We have obtained an analytical upper bound for the
LQG cost in (23) for a given Markov chain with transition
probabilities {p, q}. Next, we aim to minimize this bound
with respect to p and q to obtain the optimal sensor selection
policy. It can be easily observed that minimizing the upper
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Fig. 2: Optimal transition probabilities and scaled optimal cost.

bound in (23) is equivalent to minimizing tr(⇧̄(p, q)). Thus,
the optimal sensor selection problem can be described as

min
p,q

tr(⇧̄(p, q)) (24)

s.t. 0 <p < 1, 0 < q < 1.

We solve this optimization problem in (24) using numerical
techniques. The details are presented in Section V.

V. SIMULATIONS AND NUMERICAL RESULTS

A. UAV Model and Linearization
To validate our theoretical results, we consider a quadro-

tor platform as the UAV model. Following the modelling
approach of [16], a quadrotor is assumed to be a rigid-
body with constant mass and distinct orientation. Let ⇣ ,
[x, y, z]T , ⌘ , [�, ✓, ]T and ⇢ , [⇣, ⌘]T denote the position,
attitude, and configuration of UAV in the inertial frame of
reference. Then, the translational dynamics is defined by

m⇣̈ =

2

4
0
0

�g

3

5 + RTBf �

2

4
Dx 0 0
0 Dy 0
0 0 Dz

3

5

2

4
ẋ

ẏ

ż

3

5 , (25)

where m is mass of quadrotor, g is gravitational acceleration,
TBf , [0, 0, T ]T is thrust vector in body frame of reference
with T being the total thrust force, Di’s are the lumped first-
order aerodynamic drag coefficients in the i direction, and R

is the standard zyx rotation matrix. The rotational dynamics
in the inertial frame of reference is given by

M(⌘)⌘̈ = TBf � C(⌘, ⌘̇)⌘̇, (26)

where TBf , [⌧�, ⌧✓, ⌧ ]T is the vector representing the
torques about the Euler angles, M(⌘) is the moment of
inertia and C(⌘, ⌘̇) is a matrix that captures the centrifugal
and gyroscopic forces [16]. By defining state and input
variables as xc , [⇢, ⇢̇]T and uc , [T, T T

Bf
]T , we linearize

the UAV dynamics (25)- (26) about the hovering operating
point and then discretize the continuous-time linear model
(with sampling time 0.1s) to obtain the LTI form of (1). The
parameters of our linearized UAV model are as follows: mass
(m) is 0.468 kg, gravitational acceleration (g) is 9.81 m/s

2,
and drag coefficients (Dx = Dy = Dz) are 1 kg/s. The roll
and pitch moments of inertia in the UAV (non-inertial) frame
of reference (Ixx = Iyy) are 4.85 ⇥ 10�3

kgm
2 and the yaw

moment of inertia (Izz) is 8.801 ⇥ 10�3
kgm

2, where all
moments of inertia are contained within the matrix M(⌘).

B. Effect of Attacks on Sensor Selection Policy
We implement the optimal sensor selection policy for

the discretized linear system described in subsection V-A.
Let p

⇤(↵, D) and q
⇤(↵, D) denote the optimal transition

probabilities obtained via the minimization problem (24).
We perform the minimization numerically using Matlab by
performing an exhaustive search over the range of p and q.
Since, the minimization of cost bound in 23 is equivalent to
minimization of tr(⇧̄(p, q)), we present our results in this
section in terms of the estimation cost Jest , tr(⇧̄(p, q)).
Moreover, let the optimal cost be denoted as J

⇤
est(↵, D) ,

tr(⇧̄(p⇤(↵, D), q⇤(↵, D))).
Fig. 2 depicts the optimal transition probabilities p

⇤,q⇤ and
the scaled values (by a factor of 20 for visual clarity) of the
optimal cost J

⇤
est as a function of the attack probability ↵, for

three values of wait times D = 0, 1, 2 (the noise covariances
are W = V1 = In, V2 = 4In). It can be observed that for
small values of attack probability ↵ , p

⇤ = 0, q
⇤ = 1, i.e., it

is always optimal to use sensor S1
1. Instead, for large values

of ↵, it is always optimal to use sensor S2. Interestingly, a
sharp switching from S1 to S2 occurs in a transition region
for intermediate values of the ↵. Also, for some values of
↵ in the transition region, p

⇤ = 1, q
⇤ = 1 which implies

that the optimal policy is to periodically (deterministically)
switch between S1 and S2. Moreover, it can be observed
that the optimal cost is a non-decreasing function of ↵, since
the system performance deteriorates on increasing the attack
rate. Further, note that once we switch to S2, the optimal
cost does not change with ↵, since S2 is secure to attacks.

Finally, one can easily observe from figs. 2b and 2c that
as the wait time D increases, the transition region (from S1

to S2) shifts towards the right. This is obvious, since an
increasing wait time D leads to fewer measurements by S2,
and thus S1 is preferred more. Also, for each value of p

⇤
, q

⇤,
the optimal cost increases as D is increased.

C. Optimal Trajectory Tracking under Attacks
To visualize the tracking performance of our sensor selec-

tion policy, we simulate the trajectories of the UAV using

1Although we assume 0 < p < 1, 0 < q < 1 in (24), the limit of cost
Jest exists when p and q approach these boundary values.
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Fig. 3: Tracking under low rate DoS attack (↵ = 0.2) for the
optimal (blue) and sub-optimal (red) sensor selection policies.
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Fig. 4: Tracking under high rate DoS attack (↵ = 0.8) for the
optimal (blue) and sub-optimal (red) sensor selection policies.

Matlab. The reference trajectory is a circle in the plane
parallel to the x�y plane, and is centered at (0m, 0m, 30m)
with radius 30m. With the UAV’s initial position at the
origin, we consider two attack regimes:

(i) Low rate DoS attack (0 < ↵  0.3): As mentioned
in subsection V-B, the optimum policy under low attack
probabilities is to select S1 all the time for obtaining mea-
surements, i.e. p

⇤ = 0, q
⇤ = 1. Fig. 3 shows the UAV

trajectories with the optimal policies and are compared with
other sub-optimal policies. We can observe from fig. 3a (with
wait time D = 0) that the optimal policy accurately tracks the
circular trajectory. On the other hand, a sub-optimal policy
that favours S2 results in considerable tracking error, thereby
demonstrating that choosing the right policy is crucial for
tracking purposes. Further, fig. 3b (wait time D = 3) shows
that a sub-optimal policy which favours S1 has a performance
similar to the optimal policy. Finally, note that the optimal
policy performance under low attack rates is independent of
the wait time, as evident from figs. 3a and 3b.

(iii) High rate DoS attack (0.7  ↵  1): Fig. 4 shows
the UAV trajectories when S1 is subjected to attacks with
a higher rate of ↵ = 0.85. Comparing with fig. 3, we can
easily observe that the tracking performance degrades as the
attack becomes more severe. The optimal policy in this high
rate attack regime is to always select S2 for measurements,
i.e. p

⇤ = 1, q
⇤ = 0. When wait time D = 0 (fig. 4a), a sub-

optimal policy of favouring S2 yields similar performance to
the optimal policy. Finally, in the case of larger wait time
(fig. 4b with D = 3), both the optimal policy (selecting S2)
and the sub-optimal policy (favouring S1) perform poorly
since S1 is affected by high rate attacks and S2 by a large
wait time.

VI. CONCLUSION AND FUTURE WORK

In this paper we studied a security-performance trade-
off in resource constrained autonomous UAVs that track
a reference trajectory. We showed that under denial-of-
service attacks on the GPS sensor, a camera sensor can be
used to mitigate the effects of the attacks. We presented
a stochastic Markovian sensor selection policy to balance
security and tracking performance. We numerically obtained
optimal switching probabilities between the two sensors so
as to minimize the UAV’s tracking error under DoS attack.

One direction of interest is to consider other types of at-
tacks including incremental and non-critical jamming attacks,
and integrity attacks such as GPS spoofing. Additionally,
consideration of linear time-varying approximations of the
non-linear UAV dynamics, exploring security-performance
trade-off for different trajectory tracking techniques, and
providing analytical solutions to the described optimization
problems are directions of future research.
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