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Abstract— In this paper we consider a security problem for

stochastic interconnected systems, where the objective is to

detect attacks on the system dynamics from sparse measure-

ments. We consider two classes of detectors, namely centralized

and decentralized detectors, which differ primarily in their

knowledge of the system model. In particular, a decentralized

detector has a model of the dynamics of the isolated subsystems,

but is unaware of the interconnections between them. Instead,

a centralized detector has a model of the entire dynamical

system. We characterize the performance of the two detectors,

and show that, depending on the systems parameters and attack

strategy, each of the detectors can outperform the other. In

other words, it may be possible for a decentralized detector

to outperform a centralized detector, which, as we discuss, is

due to the considered hypothesis testing problem. Finally, we

illustrate our results through a set of numerical examples.

I. INTRODUCTION

Modern dynamical systems are increasingly becoming
more distributed, diverse, complex, and integrated with cy-
ber components. Typically, these systems are composed of
multiple subsystems, which are interconnected via physical
couplings among the states of the subsystems. An example
of such systems is the smart city, which comprises of power
grid, transportation system, and a water distribution network,
among other [1], [2], [3]. Although these subsystems are
interconnected, they are often operated independently. As a
result, they may have limited information about the overall
system dynamics. Further, the subsystem operators may not
be willing to share information with the other subsystems
due to security and privacy concerns, and it may be difficult
to directly measure the interconnection signals between the
subsystems. For these reasons, interconnected cyber-physical
systems may be more vulnerable targets to cyber/physical
attacks, which greatly degrade the performance [4].

During the last few years there have been many studies
on analyzing the effect of different types of attacks on
dynamical systems, and possible remedial strategies [5]. A
key component of these strategies is the assumption that a
detector responsible for making decisions about attacks has
complete knowledge of the overall system dynamics. Yet, due
to the limited information available to subsystems or their
unwillingness to share information, it is not always feasible
to test for attacks on the global system. One possible strategy
to tackle this situation is to allocate the detection tasks to
each subsystem independently. In this paper we develop such

This material is based upon work supported in part by ARO award
71603NSYIP, and in part by NSF awards ECCS1405330 and BCS1631112.
Rajasekhar Anguluri, Vaibhav Katewa, Fabio Pasqualetti are with the De-
partment of Mechanical Engineering, University of California at Riverside,
{ranguluri,vkatewa,fabiopas}@engr.ucr.edu.

a local detection strategy, which enables each subsystem to
detect local attacks in the absence of information regarding
other subsystems. We consider a scenario in which the local
detectors cooperate to detect attacks on the interconnected
system, thereby resulting in a decentralized attack detection
strategy. We compare this decentralized strategy with a
centralized strategy, in which a central detector detect attacks
on the whole system based on the complete knowledge of
the overall system model.
Related Work: Since the past decade, researchers exten-
sively studied both the detection and the estimation of the
attacks in the stochastic systems, under the realm of cyber-
physical system (CPS) security. A few notable works in
this direction includes [6], [7], [8], [9]. For more interesting
results in the security of CPS, we refer the reader to [5].

We note that the most of the existing works on the
attack detection assumes a centralized detector. Although,
the decentralized detection strategies are well studied in the
realm of communications and signal processing communities
[10], [11], in the context of dynamical systems framework,
decentralized detectors have recently been proposed [12],
[13], [14]. In all these works, authors mainly studied the
distributed attack detection for the deterministic dynamical
systems using geometric control techniques. Hence, many of
the existing tools cannot be readily extended to the stochastic
systems and thus, in this paper, we take a step forward to
develop a decentralized detector for attack detection in the
stochastic systems along with a centralized detector.
Contributions: The main contributions of this work are as
follows. First, we present two classes of detectors, namely
centralized and decentralized detectors, to decide on the
presence of deterministic additive attacks against intercon-
nected systems driven by noise. Our detection schemes are
based on the decision theoretic framework that falls under
the category of simple vs composite statistical hypotheses
testing. We characterize the detection probability of the
detectors as a function of the system knowledge available to
a detector, i.e., system dynamics, noise statistics, and attack
parameters. Although, intuitively one may believe that a
centralized detector must perform better than a decentralized
detector, contrast to that belief, we show that there exist some
scenarios, depending on the system dynamics and attack
parameters, such that a decentralized detector can outperform
a centralized detector.
Paper Organization: The rest of the paper is organized as
follows. Section II contains the problem setup and some
preliminary notions. Section III presents our measurement
processing methods and sets up our hypothesis testing frame-
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work. The performance comparisons of the centralized and
decentralized detectors are detailed in Section IV. In Section
V we provide numerical examples to support our theoretical
findings. Finally, in Section VI we conclude the paper.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

We consider the following discrete-time, linear, stochastic
interconnected system composed of N subsystems:

xi(k + 1) = Aiixi(k) +
NX

j 6=i

Aijxj(k) + wi(k),

yi(k) = Cixi(k) + vi(k),

(1)

where xi 2 Rni is the state of the i-th subsystem, and
wi ⇠ N (0,⌅i), vi ⇠ N (0,⌥i) are the process and
measurement noises. We assume that the noise vectors are
mutually independent, that is, wi(k) |= v(k) (8k 2 N), and
that wi |= wj , vi |= vj whenever i 6= j. Let n =

P
N

i=1 ni

and, to simplify the notation, let Biui =
P

N

j 6=i
Aijxj , where

Bi =
⇥
Ai1 · · · Ai,i�1 Ai,i+1 · · · AiN

⇤
and ,

u
T
i
=
⇥
x
T
1 · · · x

T
i�1 x

T
i+1 · · · x

T
N

⇤T
2 Rn�ni .

We allow for the presence of attackers that compromise
the dynamics of the subsystems, and we model such attacks
as exogenous unknown inputs. In particular, the system
dynamics of the i-th subsystem when subject to the attack
B

a

i
2 Rni⇥mi , ua

i
2 Rmi become

xi(k + 1) = Aixi(k) +Biui(k) +B
a

i
u
a

i
(k) + wi(k),

yi(k) = Cixi(k) + vi(k).
(2)

In vector form, the dynamics of the interconnected system
(2) read as

x(k + 1) = Ax(k) +B
a
u
a(k) + w(k) (3)

where x =
⇥
x
T
1 . . . x

T
N

⇤T, w =
⇥
w

T
1 . . . w

T
N

⇤T
2 Rn,

u
a =

⇥
(ua

1)
T

. . . (ua

N
)T
⇤T

2 Rm, m =
P

N

i=1 mi, and

A =

2

64
A11 · · · A1N

...
. . .

...
AN1 · · · ANN

3

75 , B
a =

2

64
B

a

1 · · · 0
...

. . .
...

0 · · · B
a

N

3

75 .

We assume that a decentralized detector is composed of
N local detectors indexed by i 2 {1 . . . N}, where each
i�th local detector knows the local matrices Aij for all j 2
{1 . . . N}, the statistics of wi and vi, and the measurements
yi(k) collected over discrete times in the interval [1, T ].
Based on the local measurements, each i�th local detector
decides against the presence of attacks in the i�th subsystem.
The decision about the presence of attacks on the overall
system is made by the decentralized detector based on the
decisions reported by the local detectors.

Instead, a centralized detector knows the matrix A and
makes decision about attacks based on the measurements
{yc,1(k), · · · , yc,N (k)} over the interval [1, T ], where

yc,i(k) =
⇥
0 · · ·Ci · · · 0

⇤
| {z }

,Cc,i

x(k) + vi(k) (4)

From the equation (4) we notice that the local measurements
obtained by the centralized detector from the sensors of
the i�th subsystem sensor are dependent on the state x(k)
rather than just xi(k). Hence, we assume that the centralized
detector has knowledge about the statistics of the noise
vectors wi and vi for all i 2 {1 · · ·N}.

The following procedures summarizes our detection mech-
anisms for detecting attacks on the interconnected system:
1. Centralized detection scheme:

(i) Collect measurements: For all i 2 {1 · · ·N}, collect
the measurements using (4) over the interval [1, T ]:

Yc,i ,
⇥
y
T
c,i
(1) y

T
c,i
(2) · · · y

T
c,i
(T )
⇤T

Yc ,
⇥
Y

T
c,1 Y

T
c,2 · · · Y

T
c,N

⇤T

(ii) Process measurements: Process the measurements
Yc !

eYc to perform detection (see below).
(iii) Attack decision: A suitable statistical test is conducted

on eYc to decide against attacks.

2. Decentralized detection scheme:

(i) Collect measurements: For every i 2 {1 · · ·N},
collect measurements (2) over the interval [1, T ]

Yi ,
⇥
y
T
i
(1) y

T
i
(2) · · · y

T
i
(T )
⇤T

.

(ii) Process measurements: Process the measurements
Yi ! eYi to perform local detection using a suitable
statistical test (see below).

(iii) Attack decision: A decision is made based on pooling
the decisions from the local detectors.

Remark 1: (Similarity of measurements Yi and Yc,i) We
note that the local and centralized detectors possess the same
set of measurements, i.e., Yi = Yc,i for all i 2 {1, · · · , N}

(this is evident from (2) and (4)). But the way the detectors
process their measurements is different due to their different
information about the interconnected system dynamics. ⇤

III. DETECTION FRAMEWORK

A. Processing of measurements

Define the following observability and forced response
matrices associated with the ith subsystem

Oi =

2

64
CiAii

...
CiA

T

ii

3

75 ,F
(u)
i

=

2

64
CiBi . . . 0

...
. . .

...
CiA

T�1
ii

Bi . . . CiBi

3

75 ,

F
(a)
i

=

2

64
CiB

a

i
. . . 0

...
. . .

...
CiA

T�1
ii

B
a

i
. . . CiB

a

i

3

75 ,F
(w)
i

=

2

64
Ci . . . 0
...

. . .
...

CiA
T�1
ii

. . . Ci

3

75 .

Analogously, define Oc,i, F
(a)
c,i

, and F
(w)
c,i

for the intercon-
nected system (3) with respect to the local measurements yc,i
(4). Then, Yc,i and Yi can be explicitly written as

Yi = Oixi(0) + F
(u)
i

Ui + F
(a)
i

U
a

i
+ F

(w)
i

Wi + Vi,

Yc,i = Oc,ix(0) + F
(a)
c,i

U
a + F

(w)
c,i

W + Vi,

(5)
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where

Ui =
⇥
ui(0)T · · · ui(T � 1)T

⇤T
,

U
a

i
=
⇥
u
a

i
(0)T · · · u

a

i
(T � 1)T

⇤T
,

U
a =

⇥
u
a(0)T · · · u

a(T � 1)T
⇤T

,

Wi =
⇥
wi(0)T · · · wi(T � 1)T

⇤T
,

W =
⇥
w(0)T · · · w(T � 1)T

⇤T
, and

Vi =
⇥
vi(0)T · · · vi(T � 1)T

⇤T
.

The terms xi(0), Ui, and U
a

i
in (5) are unknown to i�th local

detector, while the terms x(0) and U
a in (5) are unknown to

a centralized detector. As the goal of the detectors is to detect
if Ua

6= 0, we let the detectors pre-process the measurements
to cancel the effect of the unknown parameters that do not
carry information about the attack vector. Let NT

i
and N

T
c,i

be a basis for the left null space of
h
Oi F

(u)
i

i
and Oc,

respectively, and let

eYi , N
T
i
Yi = N

T
i

h
F

(a)
i

U
a

i
+ F

(w)
i

Wi + Vi

i
, and

eYc,i , N
T
c,i
Yc,i = N

T
c,i

h
F

(a)
c,i

U
a + F

(w)
c,i

W + Vi

i
.

(6)

Notice that, in the absence of attacks, the measurements (6)
depend only on the system noise. Instead, in the presence of
attacks, such measurements also depend on the attack vector,
which may leave a statistical signature for the detectors1.

Before presenting our testing procedures we express eYc,i

and eYi in terms of Yc =
⇥
Y

T
c,1 Y

T
c,2 · · · Y

T
c,N

⇤T. We
begin with the following proposition.

Proposition 3.1: Let

N
L

i
=
n
z : zT

h
Oi F

(u)
i

i
= 0T

o
, and

N
L

c,i
=
�
z : zTOc,i = 0T

 
.

Then, NL

i
✓ N

L

c,i
.

Proof: Without loss of generality we can consider the
case when i = 1. Consider the linear system defined in (2)
without the attack and noise inputs i.e., x(k + 1) = Ax(k),
and let x(k) =

⇥
x1(k)T ex1(k)T

⇤T. Now, let

A =


A11 B1

eB1
eA11.

�

Then x(k + 1) = Ax(k) can be decomposed as,

x1(k + 1) = A11x1(k) +B1ex1(k),

ex1(k + 1) = eA11ex1(k) + eB1x1(k).
(7)

Then by straightforward computation we have,

Oc,1x(0) = O1x1(0) + F
(u)
1

⇥
ex1(0)T . . . ex1(T � 1)T

⇤T
.

Consider an arbitrary vector z such that zT
h
O1 F

(u)
1

i
=

0T holds true, then from the above decomposition it can be
seen that z also satisfies the property that zTOc,1 = 0T

1If ImBa
i ) ✓ Im(Bi), then NT

i F
(a)
i = 0, for all i 2 {1, . . . , N}.

Thus for these type of attacks, the aforementioned measurement processing
technique cannot retain the attack signature to perform detection.

Proposition 3.1 is due to the fact that the i�th local de-
tector has more uncertainty about the system (3) knowledge
than a centralized detector. Since N

L

i
✓ N

L

c,i
, we have

Ni = PiNc,i, for all i 2 {1, . . . , N}, for some full row rank
matrix Pi. By invoking the fact that Yi = Yc,i (see Remark 1)
it now follows that eYi = (PiNc,i)TYc,i and eYc,i = N

T

c,i
Yc,i.

Finally, let eYc =
h
eY T
c,1, · · · ,

eY T
c,N

iT
and notice that

eYi = (Mi
eNi)

T
Yc and eYc = N

T

c
Yc, (8)

where eNi = PiNc,i, MT
i
=
⇥
0 · · · Ii · · · 0

⇤
, Ii is the

identity matrix, and N
T
c
= blkdiag

⇥
N

T
c,1 · · · N

T
c,N

⇤
.

The above representation helps us to express the statistical
properties of eYi and eYc in the terms of Yc. Hence, for the
purpose of inference, analogous to (5), we express Yc as

Yc = Ocx(0) + F
(a)
c

U
a + F

(w)
c

W + V, (9)

where,

Oc =
⇥
O

T
c,1 · · · O

T
c,N

⇤T
,

F
(a)
c

=
⇥
(F (a))T

c,1 · · · (F (a))T
c,N

⇤T
,

F
(w)
c

=
⇥
(F (w))T

c,1 · · · (F (w))T
c,N

⇤T
, and

V =
⇥
V

T
1 · · · V

T
N

⇤T
.

B. Statistical properties of the processed measurements

Let � and ⌃ be the mean vector and the covariance matrix
of Yc, respectively. Then, from (9) we have

� = Ocx(0) + F
(a)
c

U
a and

⌃ = (F (w)
c

)(I ⌦ ⌅c)(F
(w)
c

)T + (I ⌦⌥c),

where, ⌅c , blkdiag
�
⌅1 · · · ⌅N

�
and ⌥c ,

blkdiag
�
⌥1 · · · ⌥N

�
. Moreover, Yc is normally dis-

tributed and so are eYi and eYc. Thus we have

�c , E[eYc] = N
T
c
�,

�i , E[eYi] = (Mi
eNi)

T
�,

⌃c , Cov[eYc] = N
T
c
⌃Nc, and

⌃i , Cov[eYi] = (Mi
eNi)

T⌃(Mi
eNi).

(10)

Observe that the vectors �i and �c depend on the attack
vector Ua, while the covariance matrices ⌃i and ⌃c are in-
dependent of the attack. This motivates us to use a detection
algorithm based on the mean vectors of the measurements.

C. Statistical hypothesis testing

We assume that a centralized detector and all the local
detectors employ the generalized likelihood ratio tests [15]
for deciding against attacks. Let H0 be the null hypothesis,
where the system is not affected by attacks, and let H1 be the
alternative hypothesis. To decide which hypothesis is true,
each detector performs the following test:

⇤i , eY T
i
⌃�1

i
eYi

H1

?
H0

⌧i and ⇤ , eY T
c
⌃�1

c
eYc

H1

?
H0

⌧c, (11)

where ⌧i and ⌧c are suitable thresholds.
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Let P
F

i
and P

F

c
be the false alarm probabilities of a

i�th local detector and a centralized detector, respectively,
then P

F

c
, Prob [⇤c � ⌧c|H0] and Prob [⇤i � ⌧i|H0]. Sim-

ilarly, we define the probabilities of detection, that is the
probability of deciding for H1 when H1 is true, as P

D

c
,

Prob [⇤c � ⌧c|H1] and P
D

i
, Prob [⇤i � ⌧i|H1].

The following result [16, Theorem 3.3.3] helps to compute
the detection and false alarm probabilities

(i) under H0: for all i 2 {1 . . . N}, ⇤i ⇠ �
2(pi), where

pi = rank(⌃i), and,
(ii) under H1: for all i 2 {1 . . . N}, ⇤i ⇠ �

2(pi,�i),
where pi = rank(⌃i) and �i = �

T
i
⌃�1

i
�i/2.

The parameters pi and �i are referred to as degrees of
freedom and non-centrality parameter, respectively. Analo-
gously, for the centralized detector’s test statistic we have
pc = rank(⌃c) and �c = �

T
c
⌃�1

c
�c/2.

Remark 2: (System theoretic interpretation of detection
probability parameters) The following discussions are equiv-
alently valid in the case of the centralized detector as well.
(i) Degrees of freedom of pi : Intuitively, the degrees of
freedom pi measure the amount of information possessed
by a detector. The probability of detection is an increasing
function of the detectors information as captured by pi.
Formally, for fixed ⌧i and �i, we have lim

pi!1
P

D

i
(⌧i, pi,�i) =

1 [17]. Further, it should be observed that pi depends on the
rank of N

T
i

in (6) through the matrix ⌃i, and that the rank
of NT

i
is inversely proportional to the rank of the matrix Bi

in (2). Thus, the more the detector knows about the system
dynamics, the smaller the rank of Bi, the larger the rank of
N

T
i

, the value of pi and, ultimately, the better the detection
performance of the decentralized detector.
(ii) Non-centrality parameter �i The non-centrality param-
eter �i measures the intensity of the signature of the at-
tack signal on the measurements. In fact, from (10) we
have 2�i = �

T
i
⌃�1

i
�i = (Ua)Tf⌃i

�1
(Ua), where e⌃�1

i
=h

(Mi
eNi)TF

(2)
i

iT
⌃�1

i

h
(Mi

eNi)TF
(2)
i

i
. Although the above

expression depends on U
a, by expanding e⌃�1

i
we can see that

the result depends on U
a

i
. It also follows that PD

i
increases

monotonically with �i, and it tends to P
F

i
as �i ! 0. ⇤

IV. CENTRALIZED AND DECENTRALIZED DETECTION OF
ATTACKS

In this section we aim to compare the performance of
decentralized and centralized detectors. We assume that the
decentralized detector decide on attacks if any of the local
detector detects an attack (see Section II). We now define
the false alarm and detection probabilities as

P
F

d
, Prob [ at least one local detector decide H1|H0] ,

P
D

d
, Prob [ at least one local detector decide H1|H1] .

We state a lemma that relates above the probability mea-
sures with such quantities of the local detectors.

Lemma 4.1: (Decentralized detector false alarm and
detection probabilities) Let PF

d
and P

F

i
be the false alarm

probabilities of the decentralized and ith local detector,

respectively. Let PD

d
and P

D

i
be the detection probabilities

of the decentralized and ith local detector. Then,

P
F

d
= 1�

NY

i=1

�
1� P

F

i

�
and P

D

d
= 1�

NY

i=1

�
1� P

D

i

�
.

Proof: Trivially follows from the statistical indepen-
dence of eYi, for all i 2 {1, . . . , N}.

The above lemma serves two purposes: (i) it allows us
to compute the decentralized detector false alarm probability
based on the local detector’s false alarm probabilities, and
(ii) it allows us to compare the detection probabilities of
centralized and decentralized detectors via the local de-
tector’s detection probabilities. In what follows, to have a
fair comparison between the detection probabilities of the
decentralized and centralized detectors, we let their false
alarm probabilities be equal, i.e., PF

c
= P

F

d
. We now state

a lemma that provides a relationship between a local and
centralized detector’s detection probability parameters.

Lemma 4.2: (Non-centrality and degrees of freedom:
centralized vs a local detector) For all i 2 {1 · · ·N} the
following inequalities hold:

(i) pi < pc

(ii) �i�c

Proof: See the Appendix.
The Lemma 4.2 states that a centralized detector has more

information about the attack vector than the local detector,
and this fact is measured by the degrees of freedom and the
non-centrality parameter. We make the following assumption
for computing the detection probabilities of the decentralized
and the centralized detectors.

A1: The detectors collect sufficiently many measure-
ments, that is, T is sufficiently large.

In A1, because T is large, the detection probabilities
can be approximated using the standard normal distribution
with appropriate mean and variance [17]. Now we state
our first result, which provides conditions under which a
decentralized detector outperforms a centralized detector.

Theorem 4.3: (Sufficient conditions for P
D

d
� P

D

c
) Let

⌧i and ⌧c be the decision thresholds of a i�th local detector
and a centralized detector, respectively, and let

�i =

s
pi + 2�i

pc + 2�c

.

Under the assumption of A1, if ⌧i � (�i + pi) 

�i [⌧c � (�c + pc)] for some i 2 {1, . . . , N}, then P
D

d
�

P
D

c
.
Proof: Let the above relationship hold true for any

of the ith local detector. Under the assumption of A1, we
now approximate detection probabilities using the CDF of

standard normal, i.e., �(x) = 1p
2⇡

xR
�1

e
�t

2
/2
dt. Define µi ,

�i + pi and �
2
i
,
p
2(pi + 2�i). Then we have

P
D

i
, Prob

"
⇤i � µip

�
2
i

�
⌧i � µip

�
2
i

#
⇡ 1� �

 
⌧i � µip

�
2
i

!
.
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Similarly, for the centralized detector, define µc , �c + pc

and �
2
c
,
p
2(pc + 2�c). Then,

P
D

c
, Prob

"
⇤c � µcp

�2
c

�
⌧c � µcp

�2
c

#
⇡ 1� �

 
⌧c � µcp

�2
c

!
.

From the hypothesis of the theorem and the monotonicity
property of standard normal CDF we now conclude that

⌧i � µip
�
2
i


⌧c � µcp

�2
c

=) �

 
⌧i � µip

�
2
i

!
 �

 
⌧c � µcp

�2
c

!
,

which further implies that PD

i
> P

D

c
. By the definition of

P
D

d
(see Lemma 4.1), for any i 2 {1, . . . , N} we have

1� P
D

d
=

NY

i=1

�
1� P

D

i

�
 (1� P

D

i
). (12)

The inequality follows because for any i 2 {1, . . . , N}, 0 

(1 � P
D

j
)  1. Since, we already noticed that PD

i
� P

D

c
,

by invoking the inequality (12) the result follows.
The condition in Theorem 4.3 guarantees better perfor-

mance of a decentralized detector over a centralized detector
in a subset of the region spanned by detection probability
parameters. Intuitively, by the way we defined the test (11),
if the test statistic and the decision threshold are far apart, i.e.,
�c >> ⌧c (�i >> ⌧i), a centralized (local) detector easily
decides attacks and, else otherwise. As ⇤i and ⇤c are random
quantities, Theorem 4.5 places conditions on the expected
value of ⇤i, where E [⇤i] = �i + pi, such that a i�th local
detector can easily detect attacks, and hence contributing to
better performance of the decentralized detector.

Lemma 4.4: (Upper bound on P
D

d
) Let ⌧i, pi, and �i be

the detection probability parameters of a i�th local detector.
Also let, Sd ⇠ �

2(psum,�sum), where psum =
P

N

i=1 pi,
�sum =

P
N

i=1 �i, and ⌧min = min
1iN

⌧i. Then,

P
D

d
 Prob [Sd > ⌧min] ,

Proof: See the Appendix.
The above lemma helps us in providing sufficient condi-

tions, under which a centralized detector over a decentralized
detector, similar to that of the conditions in Theorem 4.3.

Theorem 4.5: (Sufficient conditions for P
D

c
� P

D

d
) Let

⌧min = min
1iN

⌧i and ⌧c be the decision threshold of the

centralized detector, respectively. Define psum =
P

N

i=1 pi,
�sum =

P
N

i=1 �i, and

�c =

s
pc + 2�c

psum + 2�sum
,

Under the assumption of A1, if ⌧c � (�c + pc) 

�c [⌧min � (�i + pi)] for all i 2 {1 · · ·N}, then P
D

c
� P

D

d
.

Proof: By invoking the upper bound on P
D

d
obtained

in Lemma 4.4, the proof of the statement follows the similar
lines of the argument as in Theorem 4.3. Hence, omitted.

Similar to the condition in Theorem 4.3, the sufficient
condition in Theorem 4.5 restricts the deviation of the

centralized detector’s decision threshold from the expected
value of ⇤c, where E[⇤c] = �c + pc. It places conditions on
the magnitude of mean deviation of the centralized detector,
i.e., E [⇤c] � ⌧c with respect to the mean deviations of all
the local detectors, i.e., E [⇤i] � ⌧i. Since, the performance
of a decentralized detector is influenced by all of the local
detectors, for a centralized detector to perform better, it is
intuitive to expect restrictions on the region spanned by the
detection probability parameters of all the local detectors.

Remark 3: (Sub optimality of GLR test) It is interesting
to note that a decentralized detector can outperform the
centralized detector. For instance, consider the case �i = �c.
Then, from the properties of non-central chi square distribu-
tion it, follows that even with fewer measurements a i�th
local detector can outperform the centralized detector, and
thus resulting in a superior performance of a decentralized
detector. We note that this kind of behavior is because of the
suboptimal nature of the GLR test [15] and the equal false
alarm probability constraint we imposed for the detection. ⇤

V. ILLUSTRATIVE EXAMPLE

We consider an interconnected system composed of 3
subsystems, with equal local dynamics, i.e., A11 = A22 =
A33, where Aii 2 R4⇥4 and i 2 {1, 2, 3}. Instead, the
interconnection matrices are different, i.e., B1 6= B2 6= B3,
where Bi 2 R4⇥8 and i 2 {1, 2, 3}. In particular,

Aii =
1

2

2

664

1 1 0 1
0 1 1 0
1 0 1 1
0 0 1 1

3

775 ,Col(Bi) 2 span

8
>><

>>:

2

664

1
0
0
1

3

775 ,

2

664

0
1
1
1

3

775

9
>>=

>>;
,

where Col(·) denotes the columns of the matrix. The mea-
surement horizon is T = 10, and the false alarm probability
is P

F

i
= 0.05 for all i 2 {1, 2, 3}. Let ua

1 , ua

2 , and u
a

3 be the
attacks on the subsystems 1, 2, and 3 respectively.
Case 1 (unequal attacks) Let u = [0, 1, 1, 0]T. For all times
in the interval [1, T ], let u

a

1 = u and u
a

2 = u
a

3 = 0.1u.
Notice that the impact of attack signal on the subsystem 1
is higher than the others. In Fig.1, we illustrate this fact
through the mean value (proportional to attack intensity) test
statistics. Further, as shown in Fig. 1, this attack vector leads
to mean value of the test statistic that satisfies the conditions
in Theorem 4.3 and hence, it follows that PD

d
� P

D

c
.

Case 2 (equal attacks) Let ua

1 = u
a

2 = u
a

3 = [0, 1, 1, 0]T, for
all times in the interval [1, T ]. In Fig. 2, we showed only the
performance of local detector-1 vs as centralized detector,
as the local detector-1 has higher value of non-centrality
parameter than the other local detector. As illustrated in Fig.
3, we note that this choice of attack vector lead to lesser
mean deviation of centralized detector and thus Theorem 4.5
guarantees the inequality P

D

c
� P

D

d
.

VI. CONCLUSIONS

This paper studies the attack detection problem for the
interconnected stochastic systems. We developed centralized
and decentralized detection strategies for detecting attacks
and, characterize the detection performances based on their
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Fig. 1. The plot shows the densities of the test statistics of local detector-1
and a centralized detector, under the scenario of unequal attacks. The shaded
area depicts the detection probabilities of the detectors. Notice that the mean
deviation of local detector-1 (µ1� ⌧1 = 1.2, see green ticks on the density
of local detector-1) is less than the mean deviation of the centralized detector
(µc � ⌧c = 4.8, see green ticks on the density of centralized detector).
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Fig. 2. The plot shows the densities of the test statistics of local detector-
1 and a centralized detector in the case of equal attacks. The shaded area
depicts the detection probabilities of the detectors. Notice that the mean
deviation of the centralized detector (µc � ⌧c = 1, see green ticks on
the density of centralized detector) is less than the mean deviation of local
detector-1 (µ1�⌧1 = 1.2, see green ticks on the density of local detector-1).

knowledge of the interconnected system. We derived condi-
tions that guarantees better performance of a detector over
another and, our results shows that the system dynamics,
attack parameters, and the choice of statistical test influence
the performance of the detectors. Finally, we demonstrated
the trade-offs between the detection performance of the
detectors with the aid of numerical examples.
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APPENDIX

Proof of Lemma 4.2:
(i) The first inequality is rather trivial, as the degrees

of freedom, pi and pc, are associated with dimensions of
processed measurements, eYi and eYc, and as eYc includes
processed measurements from all subsystems it’s dimension
should be at the least equal to the dimension of eYi.

(ii) Without loss of generality we consider the case when
i = 1. From the section III-C and (10) we have,

�1 = �
T(M1

eN1)
h
(M1

eN1)
T⌃c(M1

eN1)
i�1

(M1
eN1)

T
�,

�c = �
T
Nc⌃

�1
c

N
T
c
�.

Let ⌃c =


⌃11 ⌃12

⌃T
12 ⌃22

�
and substitute M

T

1 =
⇥
I1 0

⇤
in �i.

Then by simple algebraic manipulations it follows that

�1 = �
T
Nc


I �⌃�1

11 ⌃12

0 I

� 
⌃�1

11 0
0T 0

� 
I 0

�⌃T
12⌃

�1
11 I

�
N

T
c
�.

Instead, by Schur’s complement, we can express ⌃�1
c

as

⌃�1
c

=


I �⌃�1

11 ⌃12

0 I

� 
⌃�1

11 0
0 (⌃c/⌃11)�1

� 
I 0

�⌃T
12⌃

�1
11 I

�
,

where ⌃c/⌃11 = ⌃22 � ⌃T
12⌃

�1
11 ⌃12 > 0. By substituting

⌃�1
c

in �c, the statement of the lemma follows. ⇤
Proof of Lemma 4.4:

For all i 2 {1, . . . , N}, let Vi , {⇤i � ⌧i} and V ,n
Sd ,PN

i=1 ⇤i � ⌧min

o
be the events associated with the

test statistics. Then, we can see that
S

N

i=1 Vi ✓ V , which
implies that Prob

hS
N

i=1 Vi

i
 Prob [V]. Further, under the

hypothesis H1, we note that the term left to the inequality
is P

D

d
. Moreover, from the properties of the chi squared

distribution [17], it follows that Sd ⇠ �
2(psum,�sum). ⇤
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