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Abstract— In this paper we study an attack design problem
for interconnected systems where the attacker compromises a
subsystem at each time, which is selected randomly based on a
pre-computed probabilistic rule. The objective of the attacker
is to degrade the system performance, which is measured based
on a quadratic function of the system state, while remaining
undetected from a centralized detector. First, we derive an
explicit expression for the detection probability, analyze its
properties, and compute an upper bound. Then, we use our
upper bound to formulate and numerically solve a non-convex
optimization problem for the computation of optimal attack
strategies. Finally, we validate our results and show that our
probabilistic attack strategy outperforms a deterministic attack
strategy that compromises a fixed subsystem at each time.

I. INTRODUCTION

Modern technological systems are large and inevitably
comprise different subsystems. Each subsystem may be
responsible for one or more functions and, upon interconnec-
tion, they realize the complex functions of the whole system
[1]. The applications of these systems are far reaching,
ranging from power and water networks, to telecommuni-
cation and transportation systems [2]. The performance of
these systems is determined not only by the performance of
the individual subsystems, but also by their interconnection
dynamics. Importantly, large scale interconnected systems
are prone to attacks at the subsystem and interconnection
levels, thereby making their operation even more fragile [3].

In this paper, we study a security problem for intercon-
nected systems, where the objective of the attacker is to
degrade the performance of the interconnected system by
compromising subsystems, while maintaining undetectabil-
ity. In particular, we develop a probabilistic rule to randomly
select an attacked subsystem over time, and optimize over
the switching probabilities to maximize the degradation and
maintain undetectability from a centralized detector, which
uses a chi-squared test. Overall, our results show that the
ability to selectively compromise different parts of a system
over time greatly increases the severity of the attacks, thereby
motivating the development of advanced detection schemes
for interconnected system [4].
Related work In the last few years, with security emerging
as a major concern for real time dynamical systems, different
attack models and possible remedial frameworks have been
studied by researchers to a great extent [5], [6], [7], [8].
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Although, these works provide deep insights into the attack-
ers capabilities in compromising systems, several of these
works mainly restrict their attention to the attacks that target
fixed subparts or the overall system, thereby undermining
the vulnerabilities posed by the interconnected systems, at
various subsystem and interconnection levels.

Only recently, researchers started to study attack models
considering the challenges posed by the interconnected sys-
tems. A few notable works in this direction are as follows:
Exploiting the sparsity structure in deterministic systems, au-
thors in [9] proposed dynamic decoders to estimate the initial
state accurately. Instead, for the stochastic systems, few au-
thors proposed robust state estimation techniques exploiting
the tools from hidden mode switching systems [10], [11].
Using the variable structure systems theory, authors in [12]
demonstrated switching attacks that can disrupt the operation
of the power grid within a short interval of time. Instead,
authors in [13] considered a game-theoretic approach based
power system stabilizers to counter attack switching attacks
in smart grids. Further, few authors studied the detrimental
effects due to coordinated attacks in cyber-physical systems
[14], [4]. In our work we consider switching attacks using a
probabilistic framework and argue for the need of studying
them in the context of interconnected systems.

Contribution: The contribution of this paper is three-fold.
First, we develop an attack model which randomly, through
some pre-assigned probabilistic rule, compromise a subsys-
tem. Second, we characterize the detection probability of
a centralized detector, with respect to these attacks, and,
derive upper bounds on the detection probabilities, both in
the finite and asymptotic cases. Third, we formulate and
numerically solve an optimization problem for computing
optimal probabilistic rules with constraints on the detection
probability. Finally, we demonstrate the superiority of using
our optimal probabilistic strategy against attacking fixed
subsystem strategy using a numerical example.

Paper organization: The remainder part of the paper is
organized as follows. In Section II we introduce our inter-
connected system model, attack model, and pose attacker’s
objectives in an optimization problem. In Section III we il-
lustrate a detection procedure using hypothesis testing frame-
work, and characterize its detection probability. Section IV
contains our attack design strategy followed by a numerical
example. In Section V we conclude the paper.

Mathematical notation: Tr(·) and diag() denote the trace
and a vector of diagonal elements of a matrix, respectively.
blkdiag(A1, A2, . . . , An) denotes a block diagonal matrix
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whose block diagonal entires are A1, A2, . . . , AN . A zero
mean normally distributed random variable Y is denoted by
Y ⇠ N (0,⌃), where ⌃ is the covariance of Y . If Y follows
a noncentral chi-squared distribution, we denote it by Y ⇠
�
2(m,�), where p is the degrees of freedom and � is the

non-centrality parameter. Instead, if � = 0, we denote it
as Y ⇠ �

2(m). CDF denotes the cumulative distributive
function of a random variable. 1 denotes the all ones vector
and, for x 2 Rn, x � 0 denotes the element wise inequality.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

A. Nominal system model

We consider an interconnected system composed of N

interacting subsystems whose dynamics are as follows:

xi(k + 1) = Aiixi(k) +Biui(k) +
NX

j 6=i

Aijxj(k) + wi(k),

yi(k) = Cixi(k) + vi(k),

where xi 2 Rni is the system state, yi 2 Rmi is the
measurement, and ui 2 Rqi is the known input of the i-th
subsystem. Further, wi ⇠ N (0,Wi), vi ⇠ N (0, Vi) are the
process and measurement noise affecting the i-th subsystem
dynamics. Since the input ui is known, its contribution to
the output yi(k) is also known and, therefore, ui(k) can be
ignored. In vector form, the system dynamics read as

x(k + 1) = Ax(k) + w(k),

y(k) = Cx(k) + v(k),
(1)

where the state x, measurements y, and the noise vec-
tors w and v of the interconnected system are given
by x =

⇥
x
T
1 . . . x

T
N

⇤T, y =
⇥
y
T
1 . . . y

T
N

⇤T, w =⇥
w

T
1 . . . w

T
N

⇤T 2 Rn, v =
⇥
v
T
1 . . . v

T
N

⇤T 2 Rm,
n =

P
N

i=1 ni, and m =
P

N

i=1 mi. Furthermore, we have

A =

2

64
A11 · · · A1N

...
. . .

...
AN1 · · · ANN

3

75 and B =

2

64
C1 · · · 0
...

. . .
...

0 · · · CN

3

75 .

The initial state x(0) ⇠ N (0,⌃0), the noises w ⇠ N (0,W )
and v ⇠ N (0, V ) are uncorrelated, for all k 2 N, where the
noise covariance matrices are W , blkdiag (W1, · · · ,WN )
and V , blkdiag (V1, · · · , VN ).

We assume that (1) is operating in steady state. We allow
for the presence of attackers that compromise the dynamics
of the subsystems, and we model such attacks as exogenous
unknown inputs (see Section II-B). We equip system (1) with
a detector whose role is to trigger an alarm, based on the
innovations signals generated by a Kalman filter. Assuming
(A,C) is observable and (A,W ) is controllable, a steady
state Kalman filter employs the following recursion:

bx(k) = Abx(k � 1) +Kzk,

z(k) = y(k)� CAbx(k � 1),
(2)

where bx(k) , E[x(k)|y(0), . . . , y(k)] is the minimum

mean squared error (MMSE) estimate of x(k), and K =
PC

T [CPC
T + V ]�1 and P = A(I � KC)PA

T + W .

Further, the innovations z(k) ⇠ N (0,⌃) forms an i.i.d
sequence with covariance ⌃ = CPC

T + V .
B. Objectives of attacker and attacked system model

We assume that the main objective of an attacker is to
inject malicious inputs into the system (1) such that,

(i) at any given time, one subsystem is selected with a
probabilistic rule to inject a malicious inputs and

(ii) the rule used in (i) should maximize a quadratic cost
of the state in (1) with minimum detection probability.

First, we model our randomized policy to select subsystem
at every time instant. Then, we develop an optimization
framework to select an optimal policy. Let {ak}1k=0 be a
scalar valued i.i.d stochastic process, taking value in the finite
set {1, . . . , N}, at every time k 2 N, with probability P[ak =
i] , pi, for all i 2 {1, . . . , N}, such that

P
N

i=1 pi = 1. Let
p , [p1, . . . , pN ]T, and note that p denotes the probabilities
of selecting subsystems. Thus, by specifying p, the attack
process {ak}1k=0, realizes a subsystem index, for any given
time k. Let �i(ak) be a indicator random variable of ak,
i.e., �i(ak) = 1 if ak = i, else �i(ak) = 0 otherwise. Let
�(ak) , [�1(ak), . . . , �N (ak)]

T. Then, the attacked system
dynamics can be modeled as

x
e(k + 1) = Ax

e(k) + w(k) +⇧(k)�(ak),

y
e(k) = Cx

e(k) + v(k) + (k)�(ak),
(3)

where x
e(k) and y

e(k) denote the state and the measure-
ment of the interconnected system under attack. The attack
matrices are ⇧ , blkdiag (⇧1u1, . . . ,⇧NuN ) and  ,
blkdiag ( 1ũ1, . . . , N ũN ), respectively, where ⇧iui(k)
and  iũ(k) are the malicious inputs that an attacker wants
to inject into the i-th subsystem dynamics at time k. Further,
we assume that the process {ak}1k=0 is independent of w(k)
and v(k). Thus, the random variables �(ak), w(k), and v(k)
are mutually independent, for all k 2 N.

Let PD(k) be the detection probability of a detector. Then,
the attacker’s goal can be cast as an optimization problem:

(P.1) arg max
p�0

E
"
T�1X

k=0

x
e(k + 1)Txe(k + 1)

#
,

subject to 1T
p = 1 (4)

P
D(k)  ⇣ 8k 2 {0, . . . , T � 1}, (5)

where the expectation, E[·], is taken over the noise variables
and the process {ak}T�1

k=0 . To solve (p.1), from an attacker’s
stand point of view, we make the following assumption.

Assumption 2.1: The attacker has full knowledge about
the matrices of the system (1) and of the Kalman filter (2).
C. Relation between nominal and attacked system

In this section we characterize the bias accumulated in
the interconnected system dynamics (1) and the Kalman filter
dynamics (2) due to the attacks. Let �(k) and �(k) denote the
bias in the state and the measurements of (1), respectively.
Then, xe(k) = x(k)+�(k) and y

e(k) = y(k)+�(k), where

�(k + 1) = A�(k) +⇧(k)�(ak),

�(k) = C�(k) + (k)�(ak).
(6)
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Now, consider the following filter under attacks

bxe(k) = Abxe(k � 1) +Kz
e(k),

z
e(k) = y

e(k)� CAbxe(k � 1),
(7)

where bxe

k
and z

e

k
are analogous to the state estimate and

the innovations defined in (2). Let ↵(k) and ✏(k) are biases
accumulated in the MMSE estimate and innovations due to
the attack. Then, it is easy to see that bxe(k) = bx(k)+↵(k+1)
and z

e(k) = z(k)+ ✏(k), respectively. By using (6) and (7),
↵(k) and ✏(k) can be obtained recursively as

↵(k + 1) = (I �KC)A↵(k) +K�(k),

✏(k) = C [�(k)�A↵(k)] + (k)�(ak).
(8)

Notice that in the absence of attacks, the bias satisfy
✏(k) = 0, and z

e(k) = z(k) for all k 2 N. Instead, in
the presence of attacks, ✏(k) 6= 0 and z

e(k) 6= z(k) (at least
for one k).

III. DETECTION FRAMEWORK

Let H0 and H1 be the null and the alternative hypothesis
corresponding to the presence and absence of attacks, respec-
tively. We assume that the detector uses a chi-squared test
statistic, to compare with a threshold (⌧) and decide against
the attacks [15], [16]. Formally, we have following test

⇤(k) , z
e(k)T⌃�1

z
e(k)

H1

?
H0

⌧, 8k 2 N. (9)

The false alarm probability (PF ) and the detection probabil-
ity (PD) of the test (9) are defined in the following way:

P
F (k) , P [⇤(k) � ⌧ |H0] , and

P
D(k) , P [⇤(k) � ⌧ |H1] .

We assume that PF (k) = P
F is identical for all k 2 N. By

recalling the fact that under H0 (no attack) the bias ✏(k) = 0,
we have z

e(k) ⇠ N (0,⌃). It now follows that, under H0,
⇤(k) ⇠ �

2(m), where m is the degrees of freedom. Further,
we assume that PF is predetermined and the threshold ⌧ is
computed by the inverse CDF of �2(m).

A. Characterization of the detection probability

Notice that, in order to inject attacks that can evade the
detector, i.e., bypass the test (9), the attacker needs to know
P

D(k). Thus, in this section we derive an expression for
P

D(k). We now state a proposition that expresses the bias
✏(k) in the terms of attack input matrices ⇧(k) and  (k),
respectively.

Proposition 3.1: Let A = A (I �KC) and B(k) =
⇧(k)�AK (k). Then,

✏(k) =
⇥
CAk�1B(0) . . . CB(k � 1)  (k)

⇤
| {z }

,Ek

�(a0:k), (10)

where �(a0:k) =
⇥
�(a0)T . . . �(ak)T

⇤T.
Proof: See the Appendix.

Consider the truncation {aj}kj=0 from the original process
{aj}1j=0. Let Sk denote the set of all possible realizations

of {aj}kj=0, and ⇡k 2 Sk. The components of ⇡k can be
enumerated as [⇡0

k
,⇡

1
k
. . . ,⇡

k

k
]. With slight abuse of notation

define �(⇡k) , [�1(⇡0
k
)T, . . . , �N (⇡k

k
)T]T. We emphasize that

�(a0:k) is a random vector but �(⇡k) is a deterministic vector.
Lemma 3.2: (Detection probability) The detection prob-

ability of the test (9) is given by

P
D(k) =

X

⇡k2Sk

Q(⌧ ;m,�(⇡k))p⇡0
k
p⇡1

k
· · · p

⇡
k
k
, (11)

where Q(⌧ ; r,�(⇡k)) is the complementary CDF of
�
2(⌧,�(⇡k)) and �(⇡k) , e�(⇡k)TET

k
⌃�1Eke�(⇡k).

Proof: See the Appendix.
For the attacks that randomly select a subsystem, Lemma

3.2 states that the P
D(k) is a weighted sum of detection

probability, Q(⌧ ;m,�(⇡k)), associated with all possible
ways of selecting the locations. Also, notice that the ex-
pression (11) depends on the matrices of the interconnected
system and the KF through the impulse response Ek in (10) of
�(⇡k) = e�(⇡k)TET

k
⌃�1Eke�(⇡k). Finally, by assumption 2.1,

we note the attacker has the capability to compute P
D(k).

B. Upper bound on the detection probability

Although the formula of P
D(k) we obtained in Lemma

3.2 is exact, the number of summands in (11) increases ex-
ponentially with time k. Hence, for practical purposes, com-
puting the detection probability using (11) is not efficient.
In this section we provide an upper bound on P

D(k) using
Markov’s inequality. We now define the following matrices
that will be helpful in expressing our bound compactly:

ET
k
⌃�1Ek ,

2

64
Lk(0, 0) · · · Lk(0, k)

...
. . .

...
Lk(k, 0) . . . Lk(k, k)

3

75 , (12)

where Lk(i, j), 0  i, j  k is obtained by performing block
wise multiplication of matrices in ET

k
with those in ⌃�1Ek.

Moreover, this construction results in Lk(i, j) = Lk(j, i)T,
for all i, j. Further, define Lk and bLk as

Lk ,
X

i=j

Lk(i, j) and bLk ,
X

i 6=j

Lk(i, j), (13)

respectively. It now follows that Lk is a positive semi definite
matrix, while bLk is only a symmetric matrix.

Lemma 3.3: (Upper bound of the detection probability)
Let p = [p1, p2, . . . , pN ]T be the vector of probabilities with
pi denoting the probability of attacking the i-th subsystem,
8i 2 {1, . . . , N}. Then, for all k 2 N, it holds that

P
D(k)  m+ diag(Lk)Tp+ p

TbLkp

⌧| {z }
P

D
(k)

. (14)

Proof: See the Appendix.
Notice that, unlike the expression in (11), the upper bound

P
D

(k) is a quadratic expression in the probability vector p.
Further, P

D

(k) does not depend on the Q function, which is
an infinite series. Rather it depends on the impulse response
(10) through the matrices Lk and bLk. Finally, note that the
bound becomes loose if ⌧ is not sufficiently large.
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C. Asymptotic upper bound

To characterize an asymptotic expression for the bound
P

D

(k) when k ! 1, we make the following assumption:
Assumption 3.4: The attack matrices are constant all

times, i.e., ⇧(k) , ⇧ and  (k) ,  for all k 2 N.
Lemma 3.5: (Asymptotic upper bound of P

D(k)) Let
P

D

(k) be as in (14). Then,

P
D

1 , lim
k!1

P
D(k) =

m+ diag(L1)Tp+ p
TbL1p

⌧
.

where
L1 = BTOB + T⌃�1 ,

bL1 = BT [O �M]B � ⌃�1 ,

B = ⇧�AK ,

O ,
1X

j=0

(Aj)TCT⌃�1
CAj

, and

M , (I �A)�T
C

T
C(I �A)�1

.

Proof: See the Appendix.

As P
D(k)  P

D

(k), for all k 2 N, from Lemma 3.5, we
note that for large k, P

D

(k) is constant. Intuitively, if the
attacker is not detected during the transient of the filter (2)
dynamics, since the beginning of attacks, then it is unlikely
for an attacker to be detected once the filter (2) reaches the
steady state. Finally, if the matrices ⇧ and  are chosen such
that the constraint (16), i.e., PD(k)  ⇣ for k 2 {0, . . . , T0�
1}, where T is sufficiently large, Lemma 3.5 guarantees that
P

D(k)  ⇣, for all times k 2 N. This type of asymptotic
analysis helps the attacker to select attack matrices that yields
minimum detection probability P

D(k).

IV. DESIGN OF AN OPTIMAL PROBABILISTIC STRATEGY

In this section we solve the optimization problem (P.1)
described in Section II with the help of numerical optimiza-
tion techniques. First, we rewrite the cost function of (P.1) in
such way that it depends explicitly on the variable p. Under
Assumption 3.4, consider the following impulse response
matrices associated with the system (6):

HT�1 =

2

64
⇧ · · · 0
...

. . .
...

A
T�1⇧ . . . ⇧

3

75 and,

HT
T�1HT�1 =

2

64
G(0, 0) · · · G(0, T � 1)

...
. . .

...
G(T � 1, 0) . . . G(T � 1, T � 1)

3

75 . (15)

Also, let GT�1 =
P

i=j
G(i, j) and bGT�1 =

P
i 6=j

G(i, j).
It is straightforward to see that GT�1 is a positive definite
matrix, while bGT�1 is a symmetric matrix. The following
proposition expresses the cost function of (P.1) in terms of
the matrices GT�1 and bGT�1.

Proposition 4.1: The cost function of (P.1) can be equiv-
alently replaced by diag(GT�1)Tp+ p

T bGT�1p.
Proof: See the Appendix.

As P
D(k) is inefficient for computational purposes we

relax the constraint (5) of (P.1) by replacing it with con-
straint on the upper bound P

D

(k). By incorporating the
aforementioned changes in (P.1) we now have the following
quadratically constrained quadratic programming type prob-
lem, whose solution yields a sub-optimal probabilistic attack
strategy with respect to the original problem (P.1).

(P.2) arg max
p�0

diag(GT�1)
T
p+ p

T bGT�1p,

subject to 1T
p = 1,

diag(Lk)
T
p+ p

TbLkp  ⌧ ⇣ �m

8k 2 {0, . . . , T � 1} (16)

Notice that (P.2) is a non-convex optimization problem,
since the matrices bLk, for all k 2 0, . . . , T � 1, and bGT�1

are only symmetric matrices. Thus, the standard convex
optimization techniques/analysis are not applicable. Hence,
to obtain a feasible solution to the maximization problem
(P.2) we use standard numerical solvers. We also note that
this optimal solution might not be a global maximum.
A. Numerical Example

We consider a chemical reactor consisting of two con-
tinuous stirred-tank reactors [17]. The discretized system
matrices, with sampling time Ts = 1sec, are given by

A11 =


0.2603 �0.1862
0.1862 0.2603

�
, A12 =


�0.0188 �0.0230
0.0232 �0.00188

�
,

A21 =


�0.0215 �0.0266
0.0263 �0.0215

�
, A22 =


�0.3120 0.2713
�0.2713 �0.3120

�
.

We consider the state and measurement attack matrices as

⇧ =  =


1 1 0 0
0 0 1 1

�T
. (17)

Our results are illustrated in Fig. 1 and Fig. 2. For the
probabilistic rule p = [0.5, 0.5]T and P

F = 0.01, in Fig. 1
we report the actual detection probability P

D(k) (11) and
the upper bound P

D

(k). As discussed in Section III, we can
now see that the bound (14) converges to a constant when
T increases.

In Fig. 2 we report the values of the cost function (P.2)
for the optimal probabilistic rule p = p⇤ and the fixed
location rule, i.e., the degenerate probability vectors p =
[1, 0]T and p = [0, 1]T, respectively. From Fig. 2, and as
expected, the optimal rule results in higher degradation of
the system performance. Thus, this work shows that the use
of probabilistic rule for switching location attacks benefits
the attacker, as opposed to attacking fixed locations.

V. CONCLUSIONS

This paper studies a security problem for interconnected
systems, where the attacker objective is to randomly com-
promise subsystems such that the performance degradation
of interconnected system is maximum. We developed a
probabilistic rule for attacking subsystems and characterized
the bias accumulated in the system due to these attacks. We
also characterized the detection probability of a centralized
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Fig. 1. This figure shows the detection probability PD(k) (blue solid
line) and its corresponding upper bound P

D
(k) (orange dashed line) as

a function of time, which are computed using expressions in (11) and
(14), respectively. For the parametric values PF = 0.01, m = 4, and
the matrices ⇧ and  in (17) we notice that, although there is an initial
transience, due to the dynamics of Kalman filter, as discussed in Section
III, the actual value and the bound converges to a constant.
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time
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p = p*
p = [1 0]
p = [0 1]

Fig. 2. This figure shows the performance degradation of interconnected
systems, evaluated by the cost function value of (P.2), for various switching
rules. The blue solid line correspond to the optimal probabilistic rule, that
was obtained by solving (P.2) using numerical solver. The dashed orange
(resp. dotted green) is obtained by using fixed attack locations. As expected,
the cost value for all the rules increased with time. In particular, the optimal
probabilistic rule resulted in worst performance degradation than the rest.

detector, and formulated an optimization problem to find an
optimum probabilistic rule that maximizes system degrada-
tion, while maintaining minimum detection probability.
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APPENDIX

Proof of Proposition 3.1: Let ✓(k) , �(k) � A↵(k), then
from (6) and (8) it follows that

✓(k + 1) = �(k + 1)�A↵(k + 1)

= A [�(k)�A↵(k)]�AKC [�(k)�A↵(k)]

+⇧(k)u(k)�AK (k)u(k)

= A✓(k) + B(k)�(ak).

From (8), ✏(k) can be computed in the following way

✓(k + 1) = A✓(k) + B(k)�(ak),
✏(k) = C✓(k) + (k)�(ak),

by recursively expanding ✓(k) and observing that ✓(0) = 0,
since �(0) = 0 and ↵(0) = 0, the result follows.

Proof of Lemma 3.2: For any k 2 N, let I{⇤(k)�⌧} be the
indicator of the event {⇤(k) � ⌧}, and notice that

P
D(k) = E

⇥
I{⇤(k)�⌧}|H1

⇤

= E
⇥
E
⇥
I{⇤(k)�⌧} |H1, �(a0:k)

⇤
|H1

⇤
, (18)

where the inner expectation is with respect to {aj}kj=0. Let
e�(⇡k) be a realization of �(a0:k), where ⇡k = [⇡0

k
, . . . ,⇡

k

k
]T.
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Then, under H1, we note that ✏(k) = Eke�(⇡k) is a determin-
istic quantity, and further it follows that the distribution of
z
e(k) given H1 and �(a0:k) = �̃(⇡k) is N (✏(k),⌃). Since,
⇤(k) is a quadratic transformation of ze(k) we have [18],

⇤(k) |
H1,�(a0:k)=e�(⇡k)

⇠ �
2(m,�(⇡k)).

Thus, from the above characterizations it follows that

E
h
I{⇤(k)�⌧} |H1, �(a0:k) = e�(⇡k)

i
= Q(⌧ ;m,�(⇡k)).

Substituting above expression in (18) and taking the expec-
tation over all possible realizations of a0:k we have

P
D(k) =

X

⇡k2Sk

Q(⌧ ;m,�(⇡k))P(a0:k = ⇡k). (19)

Since the process {ak}1k=0 is i.i.d we now have, P(a0:k =
⇡k) =

Q
k

j=0 P(aj = ⇡
j

k
) =

Q
k

j=0 p⇡j
k
. By substituting above

expression in (19) the result follows.

Proof of Lemma 3.3: By Markov’s inequality we have

P[(ze(k))T⌃�1
z
e(k) � ⌧ |H1]| {z }

,PD(k)


E
⇥
z
e(k)T⌃�1

z
e(k)|H1

⇤

⌧| {z }
,P

D
(k)

.

Notice that under hypothesis H1, ze(k) = z(k) + ✏(k) and,
from Proposition 3.1, ✏(k) = Ek�(a0:k) 6= 0. As the attack
process {ak}1k=0 is independent of noise random variables, it
follows that z(k) and �(a0:k) are independent as well. Thus

E
⇥
(ze(k))T⌃�1

z
e(k)|H1

⇤
= E[z(k)T⌃�1

z(k)

+ ✏(k)T⌃�1
✏(k)], (20)

where the equality follows from the fact that z(k) is inde-
pendent of ✏(k) and E[z(k)] = 0. By cyclic property of trace
operator, we note that E[z(k)T⌃�1

z(k)] = Tr
�
⌃�1⌃

�
= m.

For simplifying the second term of (20) observe that

E
⇥
�a0:k�

T
a0:k

⇤
=

2

64
E[�(a0)�(a0)T] . . . E[�(a0)�(ak)T]

...
. . .

...
E[�(ak)�(a0)T] . . . E[�(ak)�(ak)T]

3

75

=

2

6664

diag(p) pp
T

. . . pp
T

pp
T diag(p) . . . pp

T

...
...

. . .
...

pp
T

pp
T

. . . diag(p)

3

7775
, (21)

where the second equality follows because {ak}1k=0 is i.i.d
and E[�(ak)] = p, for all k 2 N. Further, p = [p1, . . . , pN ]T

and, diag(p) is the diagonal matrix where the diagonal
entries are elements of p. Now consider, the following:

E[✏(k)T⌃�1
✏(k)] = Tr

�
⌃�1E[✏(k)✏(k)T]

�

= Tr
�
⌃�1E[Ek�(a0:k)�(a0:k)TET

k
]
�

= Tr
�
ET
k
⌃�1EkE[�a0:k�

T
a0:k

]
�
.

where, the second equality follows from3.1. By invoking (12)
and (21), the above expression can be further simplified as

E[✏(k)T⌃�1
✏(k)] = Tr

�
Lkdiag(p)

�
+Tr

⇣
bLkpp

T
⌘

= p
Tdiag(Lk) + p

TbLkp (22)

Substituting E[z(k)T⌃�1
z(k)] = m and (22) in (20), the

statement of the lemma follows.

Proof of Lemma 3.5: From (14) we note the following:

lim
k!1

P
D

(k) =
m+ lim

k!1
diag(Lk)Tp+ lim

k!1
p
TbLkp

⌧
(23)

Under Assumption 3.4 and from (13) it follows that

Lk =
k�1X

j=0

B(j)T(Aj)TCT⌃�1
CAjB(j) + (k)T⌃�1 (k),

=
k�1X

j=0

BT(Aj)TCT⌃�1
CAjB + T⌃�1 ,

Assuming that A = A(I �KC) is stable, it is easy to see
that lim

k!1

P
k�1
j=0 (Aj)TCT⌃�1

CAj exists. Thus

L1 , lim
k!1

Lk = BTOB + T⌃�1 . (24)

By letting Ek , P
k�1
j=0 CAjB we have

lim
k!1

Ek = lim
k!1

k�1X

j=0

CAjB = C(I �A)�1B,

where the last equality follows because A is a stable matrix.
Moreover, a straightforward computation results in bL(k) =
E

T
k
Ek � Lk. By taking limits on both sides we have

L1 , lim
k!1

bLk = lim
k!1

�
E

T
k
Ek � Lk

�

= BT (I �A)�T
C

T
C(I �A)�1

| {z }
,M

B � L1

= BT [O �M]B � ⌃�1 . (25)

By substituting (24), and (25) in (23) it follows that

P
D

1 , lim
k!1

P
D

(k) =
m+ diag(L1)Tp+ p

TbL1p

⌧
.

Proof of Proposition 4.1: Recall that xe(k) = x(k) + �(k),
E[x(0)] = 0, and x(k) is independent of �(k). Hence,

E
"
T�1X

k=0

x
e(k + 1)xe(k + 1)

#
=

T�1X

k=0

E [x(k + 1)x(k + 1)]

+ E [�(k + 1)�(k + 1)]

As the first term does not depend on the optimization variable
p, for purpose of optimization, we can treat it as a constant.
Instead, from (6) and (15) it follows that
T�1X

k=0

�(k + 1)T�(k + 1) = �(a0:T�1)
THT

T�1HT�1�(a0:T�1).

Taking the expectation on both sides of the above equation
and following the same procedure as we did in proof of
Lemma 3.3 (for analyzing E[✏(k)T⌃�1

✏(k)]), the statement
of the proposition follows.
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