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Abstract— Cyber-physical systems are vulnerable to attacks

across different and, possibly, independent attack channels.

In this paper we consider the situation where an attacker

orchestrates periodic integrity and denial of service attacks

against sensors and actuators. By switching between different

attack modalities, the attacker is able to lower the probability

of being detected while compromising the system to a greater

extent. For single-input and single-output systems driven by

noise, we frame the detection of periodic coordinated attacks

as an hypothesis testing problem, and we characterize the

detection time as a function of the system dynamics, noise

statistics, and attack parameters. Our bounds allow us to design

optimal attacks, and to highlight fundamental tradeoffs between

the dynamics of the system and its resilience to attacks.

I. INTRODUCTION

Cyber-physical systems require advanced protection mech-
anisms to secure all implementation layers and communica-
tion interfaces. In contrast with legacy control systems, typ-
ically isolated from the outer world, the cyber and physical
components of modern cyber-physical systems are intercon-
nected via local data networks, and connected to the outer
world via the Internet. This poses significant risks to personal
privacy, economic security, and critical infrastructure.

In cyber-physical systems, security implies not only data
protection and authorized operation, but also satisfactory
performance of the control system in the face of failure and
sabotage. While different methods ensuring cyber-physical
security have been proposed (see related work), existing
studies mainly consider single attack modalities, thereby
underestimating the possibility of coordinated independent
attacks, thereby neglecting stability and other issues of the
individual components of the system. In this paper, instead,
we investigate the design and resilience against coordinated,
concurrent and independent attack modes, namely integrity
and denial of service attacks against, respectively, input and
output transmission channels.
Related work With security emerging as a major concern
for cyber-physical systems, different modeling frameworks
and protection schemes have been proposed for a variety of
systems and attacks. From early works in the 1980s [1], [2],
computer scientists and information theorists have developed
fundamental intrusion detection and security mechanisms for
purely cyber systems [3], [4]. In the same years, control the-
orists have addressed fault detection and isolation problems
for purely dynamic control systems [5], [6]. Motivated by the
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advent of cyber-physical systems, cyber-physical security has
emerged as a separate and rather interdisciplinary research
field [7], [8]. While early works focus on static represen-
tations [9], [10], game-theoretic [11], information theoretic
[12], [13], and control-theoretic methods [14], [15], [16],
[17] have been proposed for dynamic models and attacks. To
the best of our knowledge, these work study detection, iden-
tification, and resilience for single attack modalities, such
as integrity and denial of service [18], [19]. Yet, intuitively,
an attacker capable of switching between independent attack
modalities may delay detection and may affect the system
performance to a greater extent. In this work we begin the
investigation of this case by studying design and detection
of combined integrity and denial of service attacks against
stochastic control systems.
Contribution The contribution of this paper is twofold.
First, we motivate and introduce the study of concurrent
and independent attacks against stochastic cyber-physical
systems, where an attacker periodically alternates between
integrity and denial of service attacks. As shown in our
numerical studies, combined attacks achieve a greater effect
while undetected than single mode attacks. Second, for each
attack modality, we characterize the detection performance
of a defender using a Sequential Probability Ratio Test
procedure as a function of the system dynamics and attack
parameters. Additionally, we provide a quantitative design
procedure for an attacker to remain undetected for a pre-
specified duration. We focus on periodic attacks against
single-input single-output stochastic control systems, and
provide results both theoretical and numerical for single and
multiple period attacks.
Paper organization The rest of the paper is organized as
follows. Section II contains our setup and some preliminary
notions. Sections III and IV contain our detectability analysis
for single and multi-modality attack respectively. Section V
contains our numerical studies of combined, periodic and
independent attacks. Finally, Section VI concludes the paper.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

In this section we detail the considered system dynamics,
attack model, and statistical detection mechanism. Our setup
is illustrated in Fig. 1.

A. System model

We consider the single-input single-output stochastic lin-
ear time-invariant system governed by

xk+1 = axk + uk + wk, yk = xk + vk, (1)

where a 2 R, with |a| < 1, and the random variables wk, vk

are process and measurement noise realizations, respectively.
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Fig. 1. Illustration of the coordinated attacks acting periodically on
independent channels for a fixed amount of time. Blue (circled arrows)
region indicates the nominal behavior of the inputs/measurements and the
red region(pointed arrows) reflects influence of attacker on the same.

For all k > 0, we assume these random variables to
be independent and identically distributed (i.i.d) Gaussian
processes with wk ⇠ N (0, �2

w), vk ⇠ N (0, �2
v). A steady

state Kalman filter is used to compute the Minimum-Mean-
Squared-Error (MMSE) estimate x̂k+1 of xk+1 from the
measurements yk = [y0, y1, . . . , yk]. The estimates read as

x̂k+1 = ax̂k + uk + K(yk � x̂k) (2)

where K is the steady state Kalman gain, and x̂0 = E[x0] =
0. As the system is observable, the Kalman filter converges in
the mean square sense, that is, the error covariance satisfies
limk!1 Pk = P , where Pk , E[(x̂k � xk)2] and P is the
solution to an algebraic Riccati equation [20]. The innovation
is computed as zk , yk�x̂k. Due to the assumption of steady
state Kalman filtering, the innovation sequence is an i.i.d
Gaussian process with zk ⇠ N (0, P + �2

v). To simplify the
analysis and without affecting generality, we will consider
the nominal input to be zero at all times. Additionally, we
will also assume that the system operates at steady state.

We assume the wireless communication channel between
actuator/sensor and the plant to be unencrypted, so that an
attacker can, for instance, arbitrarily replace the content of
the actuation signal (integrity attack). Instead, we assume
the communication between the sensor and the defender
to be encrypted, and that the attacker can interfere with
this communication by jamming the communication channel
(denial of service attack (DoS)), without altering the content
of the output signal. In the remainder of this section we
introduce our model of attacker and detection mechanism.

B. Attack model

We assume that an attacker can independently and concur-
rently cast integrity attacks on the input packets by accessing
the actuator-plant channel, and denial of service attacks by
jamming the sensor-defender channel. We focus on periodic
attacks, which we model as follows. Let the total attack time
be mT , where m is the total number of periods and T is the
duration of each period. We assume that the attacker knows
the system parameters, let Ton < T , and model integrity and
denial of service attacks in each period as follows:

uk =

(
ua

k, if 0  k < Ton,

0, otherwise,

yk =

(
ỹk, if Ton  k < T

yk, otherwise.

Thus, for 0  k  Ton, the attacker performs an integrity
attack by injecting an arbitrary control value instead of the
nominal control input (0 in this case). Instead, for Ton  k <
T , the attacker performs a denial of service attack, so that
the defender receives some predetermined value ỹk instead
of the measurement yk. We restrict our attention to constant
integrity attacks, where ua

k = u (2 R) for all times k.

C. Defender mechanism

To check if the system is operating normally, the defender
tests for two anomalies in the system, that is, whether there is
any disruption in the input channel or measurement channel.
As the defender has no direct access to monitor the input
channel, the innovation sequence is used instead to check for
integrity attacks. Instead, the measurements are used to reveal
the presence of denial of service attacks. The attack detection
problem can be cast as a hypothesis testing problem, where
the four hypotheses are:

8
>>><

>>>:

H1,0 : no integrity attack;
H1,1 : integrity attack in progress;
H2,0 : no DoS attack;
H2,1 : DoS attack in progress.

(3)

Notice that, while H1,0 and H1,1 (resp. H2,0 and H2,1)
are mutually exclusive, H1,j and H2,j can be concurrently
true, for all j 2 {0, 1}. The rationale behind the hypothesis
testing framework is as follows. When H1,0 is true, the
system is operating normally and the innovation sequence
(zk) satisfies EH1,0 [zk] = 0. When an integrity attack is in
progress, then the Kalman filters operates with the incorrect
system input, so that the innovation sequence is expected
to violate its nominal statistics leading to the detection
of the attack. Similarly, when H2,0 is true, the defender
expects to receive measurements from the sensor with erasure
probability pe. On the other hand, when H2,1 is true, the
erasure probability should differ leading to the detection of
the DoS attack. Although the mechanism leading to detection
of the two attacks is slightly different, we will employ the
same statistical detection tool, which is next described.

D. Sequential probability ratio test (SPRT)

We assume that the defender employs SPRT to solve the
hypothesis testing problem (3). Our choice is motivated by
the fact that innovations and measurements are iteratively
received by the defender. Moroever, this approach is known
to be optimal to minimize the average sample size required
to decide on a hypothesis. We define ⇤k

1 to be the log-

likelihood ratio (LLR) of some random sequence !k that are
governed by either of the hypothesis H1,0 and H1,1.

⇤k = ln
f(!1, !2, . . . , !k|H1,1)

f(!1, !2, . . . , !k|H1,0)
(4)

where f(·|H1,0) and f(·|H1,1) are known probability density
functions. For the SPRT to decide among the hypothesis, two

1The SPRT setup for H2,0 and H2,1 is identical, and it is omitted here.
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thresholds A and B are defined, with 0 < B < A < 1.
In particular, if ⇤k  B, then H1,0 is accepted, whereas
H1,1 is accepted if ⇤k � A. No decision is taken if B <
⇤k < A, and the test iterates to include further evidence.
The following thresholds are typically used in SPRT:

A = ln
�

1 � ↵
, and B = ln

1 � �

↵
,

where ↵ and � are type (i) and type (ii) probability errors
(i.e., the probabilities to accept a given hypothesis wrongly
when it is true), respectively. If the random variables !k are
independent, it can be shown that EH1,1 [⇤� ] can take the
boundary values A and B with probabilities � and 1 � �,
respectively [21], and it is given by

EH1,1 [⇤� ] = (1 � �)ln
✓
1 � �

↵

◆
� �ln

✓
1 � ↵

�

◆
, (5)

where � is the time when SPRT decides for Hypothesis H1,1.
Similar expression for EH1,0 [⇤� ] can be found in [21]. It
should be noticed that from now onwards emphasis will be
mostly on EH1,1 [⇤� ] as we are interested in charactering the
detection time of the attacker.

III. CHARACTERIZATION OF SINGLE PERIOD ATTACKS

In this section we now quantify the detection time as
a function of the system dynamics, noise statistics, and
attack parameters, for periodic integrity and DoS attacks.
Our approach uses information-theoretic notions, which we
now introduce. We refer the interested reader to [22].

Definition 1: (Kullback-Leibler divergence) Let !k be
a random variable with probability density functions either
f(!k|H1,0) or f(!k|H1,1). Then, the Kullback-Leibler (KL)
divergence between f(!k|H1,1) and f(!k|H1,0) is

EH1,1


ln

f(!k|H1,1)

f(!k|H1,0)

�
=

Z

R

f(!k|H1,1)ln
f(!k|H1,1)

f(!k|H1,0)
d!k.

(6)
With slight abuse of terminology we shall use the notation
D![k]

to refer (6). The KL divergence is a non-negative
measure that measures the distance between two probability
density functions.

Lemma 3.1: (KL divergence of innovations) The KL
divergence of innovations zk at particular instant k is directly
proportional to square of the expected value of zk, and
inversely related to variance of the zk at that instant.

Dz[k]
=

EH1,1 [zk]2

2�2
.

Proof: As zk follows normal distribution, it’s probabil-
ity density function can be computed for both the hypothesis
with parameters EH1,j [zk] (j 2 {0, 1}) and �2 = P + �2

v .
Then divergence of innovations at the k-th instant can be

obtained using equations (6) as

Dz[k]
= EH1,1

2

664ln

0

BB@

1
p

2⇡�2
exp

✓
�

(zk�EH1,1 [zk])
2

2�2

◆

1
p

2⇡�2
exp

⇣
�

(zk�EH1,0 [zk])2

2�2

⌘

1

CCA

3

775

(a)
= EH1,1


ln

✓
exp

�EH1,1 [zk]2 + 2zkEH1,1 [zk]

2�2

◆�

(b)
=

EH1,1 [zk]2

2�2
(7)

(a) follows from the fact that EH1,0 [zk] = 0 and (b) from
the linear operation of expectation operator.

It can be inferred from Lemma 3.1 that if the expected
value of innovations is greater than zero at a particular
instant, the divergence between probability density functions
governed by the corresponding hypothesis increases (and
vice versa), and the innovation random variable is governed
by the distribution of hypothesis H1,1. This key lemma also
plays a crucial role in the upcoming theorems.

A. Integrity attack with single period

In this section we study detectability of integrity attacks
with a single execution period. Notice that, when an integrity
attack is in progress, the system is driven by the attack inputs
while the Kalman filter uses the zero input. Consequently, the
expected value (with respect to H1,1) of innovations can be
characterized as

EH1,1 [zk] =

(
u

h
1��k

1��

i
, k 2 {1, . . . , Ton},

�(k�Ton)EH1,1 [zTon ] , k � Ton + 1,
(8)

where � = a � K (recall that a and K denote system
dynamics and Kalman gain, respectively), u is the integrity
attack input acting until Ton. It should be observed that,
for k � Ton + 1, the expected value of the innovations are
multiples of the expected value of innovations at time Ton,
which is due to the fact that the attack input becomes zero
at time Ton. From Lemma 3.1 and (8) we obtain a recursive
formula to compute the divergence of innovations:

Dz[k]
=

8
<

:
u2

h
1��k

1��

i2

2�2 , if k 2 {1, . . . , Ton},

�2(k�Ton)Dz[Ton]
, if k � Ton + 1.

(9)

Further, by exploiting the fact that the defender tests the
expected value of innovations assuming that they are uncor-
related, the LLR of the innovations defined in (4) simplifies
to

⇤k = ln
kY

i=1

f(zi|H1,1)

f(zi|H1,0)
=

kX

i=1

ln
f(zi|H1,1)

f(zi|H1,0)
. (10)

Finally, from the definition of KL divergence, the expected
value of ⇤k is given by

EH1,1 [⇤k] =
kX

i=1

Dz[k]
. (11)

We are now ready to characterize the relation between
expected value of detection time as a function of system
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dynamics, attack inputs (u and Ton) and SPRT parameters,
which is formalized in the following theorem.

Theorem 3.2: (Expected detection time for integrity at-
tack with single period) Let Ton be the total time of the
integrity attack and ⌧ be the time at which SPRT triggers an
alarm indicating the attack. Then, the expected detection time
of the attack is characterized by the following expression.

EH1,1 [⌧ ] = Ton � 1 +

ln
✓

g �
EH1,1 [⇤� ]

Dz[Ton]

◆

2ln(�)
, (12)

where EH1,1 [⌧ ] is the expected value of ⌧ and g is a well
defined function of system dynamics �, and the attack time
Ton, which is given by,

g =
Ton

(1 � �Ton)2
�

2�

(1 � �Ton)
.

Proof: Let Ton < ⌧ be the time for which attacker
operates on the input channel, from (11) we observe that

EH1,1 [⇤⌧ ] =
TonX

k=1

Dz[k]
+

⌧X

k=Ton+1

Dz[k]
. (13)

Using Lemma 3.1 and the characterization of expected value
of innovations defined in (8) or (9) we have,
TonX

k=1

Dz[k]
=

u2/2�2

(1 � �)2


Ton �

2�(1 � �Ton)

(1 � �)
+

�2(1 � �2Ton)

(1 � �2)

�

⌧X

k=Ton+1

Dz[k]
=

u2

2�2

"
�2

�
1 � �Ton

�2

(1 � �2)(1 � �)2

# ⇣
1 � �2(⌧�Ton)

⌘
.

(14)

By substituting (14) in Eq (13), we have,

EH1,1 [⇤⌧ ] =
Dz[Ton]



h
g � �2(⌧�Ton+1)

i
. (15)

where g is defined in the Theorem 3.2 and  = 1 � �2.
From (5), for the SPRT to decide in expectation EH1,1 [⇤⌧ ] =
EH1,1 [⇤� ] (see Section II-D for explicit characterization).
Substituting Eq (15) in the above equality and there by rear-
ranging terms (assuming Dz[Ton]

6= 0)and taking expectations
we have the desired expression for EH1,1 [⌧ ].

Moreover if T is the detection time horizion then,
(i) if EH1,1 [⌧ ] < T , the attacker gets detected.

(ii) if EH1,1 [⌧ ] � T , the attacker remains undetected.

Theorem 3.2 highlights several tradeoffs between the
system and attack parameters and the detection time.
Effect of attack magnitude on the detection time: as one
may expect, reducing the attack magnitude results in a longer
detection time. In fact, when the integrity attack time Ton,
the dynamics � = a � K and the noise statistics are fixed,
then from (9), EH1,1 [⌧ ] becomes function of the attack input.
By observing that ln(�) < 0, if the attack magnitude is
reduced we see that EH1,1 [⌧ ] increases because the quantity✓

g �
EH1,1 [⇤� ]

Dz[Ton]

◆
inside the logarithm is well defined.

Effect of the system dynamics on the detection time: For
fixed Ton, attack magnitude u and noise statistics, it is easy

to see that EH1,1 [⌧ ] is inversely related to ln(�). Hence,
if a << 1 then, ln(�) (� < 0) decreases and the attack
is detected quickly. This is because the system has faster
dynamics and any change in the inputs are reflected in the
innovations instantaneously.
Effect of the measurement noise on the detection time:

For fixed Ton, dynamics � = a � K, and attack u, EH1,1 [⌧ ]
is a function of �2 = P + �2

v (since, Dz[Ton]
is inversely

related to �2; see 9). As P is constant, if the noise level i.e.,
�2

v increases, the logarithm expression in (12) contributes
positively to the EH1,1 and the attack is detected quickly.

B. DoS attack with single period

As discussed earlier, the attacker implements a DoS attack
when the integrity attack is not in progress, that is, from
Ton + 1 to T . Recall that, when a DoS attack is in progress,
the defender does not receive any measurement, and it uses
a predetermined value to update its current LLR statistic for
integrity attacks. We assume this value to be 0, although
other choices could be of interest.

Let ✓k be a random variable, such that ✓k = 0 with
probability p, and ✓k = 1 with probability 1�p. Let H2,0 be
the hypothesis where the defender does not receive packets
with probability p = pe (nominal erasure probability of the
channel), and H2,1 the hypothesis with p = p̃e, for some p̃e

unknown to the defender. The probability density function
h(✓k) is governed in either hypothesis by

h(✓k = j|Hi) = p1�j(1 � p)j ,

where i, j 2 {0, 1}.
As p̃e is not predetermined, to test the hypothesis using

SPRT, the defender fixes an arbitrary value (which is un-
known to the attacker). Let the attacker casts DoS attack
in a such way that the porbability p̃e is less than the fixed
value of defender. Then the LLR of DoS attack will always
be negative and hence, undetected (see Section II-D) by the
SPRT. Instead, if p̃e is greater than the fixed value the attack
gets detected. The following lemma provides an estimate for
the attacker to choose pe value so that the DoS attack remains
undetected.

Lemma 3.3: (Maximum erasure probability of channel
under attack) Let p̃max be the largest erasure probability that
can be chosen by the attacker while remaining undetected.
Then, p̃max satisfies

✓
p̃maxln

p̃max

pe
+ (1 � p̃max)ln

1 � p̃max

1 � pe

◆
=

E[⇤� ]

T
,

where E[⇤� ] is defined in (5).
Proof: By observing that packet losses follows an

i.i.d distribution, the proof of lemma directly follow from
expected number samples of SPRT in the case of binomial
distribution [21]. Hence, the details are omitted.

Lemma 3.3 says that to remain undetected in T time steps,
attacker can jam arbitrary number of packets , provided that
the p̃e < p̃max. Similar results for the expected detection
time (as in the case of integrity attacks) of DoS attacks can
derived, if the attacker has access to the erasure probability
used by the defender to perform the SPRT.
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IV. EXTENSION TO MULTIPLE PERIOD ATTACKS

In this section we consider the scenario where the attacker
performs integrity and DoS attacks over multiple periods
with a constant duty cycle Dc = Ton

T . Specifically, the
attacker uses integrity attacks during the Ton component of
each period, and DoS during the T �Ton component of each
period. Let m be the number of periods. In what follows, we
assume that Dc = 0.5, although the analysis can be done also
for different values of the duty cycle.

From Lemma 3.1 and equation (8) we obtain the following
expressions for the KL divergence of the innovations at the
instants Ton and T of the j-th period (j > 1).

Dz[jTon]
= Dz[Ton]

✓
1 � �Ton

1 � �

◆2

,

Dz[jT ]
= �T Dz[jTon]

.

(16)

We now provide characterization for the expected value
of detection during an multiple period integrity attack as
a function of system dynamics, attacker inputs and SPRT
parameters in the following theorem.

Theorem 4.1: (Expected detection time for integrity at-
tack with multiple periods) Let mT be the periodic attack
time with m peirods, such that the integrity attack is active
in the Ton component of each period. Then, the expected
detection time of the attack is characterized by the following
expression.

EH1,1 [⌧m] = mT +

ln
✓
1 +


Don+Doff�EH1,1 [⇤� ]

Dz[mT ]

�◆

2ln(�)
(17)

where Don and Doff represent the divergence2 of innova-
tions during Ton and T � Ton for the attack time mT .

Proof: By proceeding similarly as in the case of
integrity attack with single period, if mT < ⌧m, the expected
value of ⇤⌧m can be expressed as

EH1,1 [⇤⌧m ] =
mX

J=1

TonX

i=1

h
DJ

0

z[i]
+ DJ

00

z[i]

i
+

⌧mX

i=mT+1

Dz[i]
(18)

where DJ
0

z[i]
and DJ

00

z[i]
are divergences of J th period ith

instant during Ton component and during T �Ton component
respectively. If we set EH1,1 [z0] = 0, then for each J th

period, from Lemma 3.1, (8) and (16) we have,

TonX

i=1

DJ
0

zi
=

TonX

i=1

Dz[i]
+ �2iD(J�1)T +

2�iE[zi]E[z(J�1)T ]

2�2

TonX

i=1

DJ
00

zi
=

TonX

i=1

�2iDz[(J�1)T ]

⌧mX

i=mT+1

Dz[i]
= �2

✓
1 � �2(⌧m�mT )

1 � �2

◆
Dz[mT ]

(19)

2See (9) for equivalent notions of divergence in single period

By substituting (19) and denoting  = �2

1��2 in (18) we have,

EH1,1 [⇤⌧m ] = m
TonX

i=1

Dz[i]
+

mX

J=1

TonX

i=1

2�i
q

Dz[i]
Dz[(J�1)T ]

| {z }
Don

+
mX

J=1


⇥
Dz[JTon]

+ Dz[(J�1)T ]

⇤ �
1 � �2Ton

�

| {z }
Doff

+ 
⇣
1 � �2(⌧m�mT )

⌘
Dz[mT ]

(20)

By equating EH1,1 [⇤⌧m ]=EH1,1 [⇤� ] (see proof of Theorem
3.2 for similar argument) and there by rearranging terms,
followed by taking expectations (with respect to H1,1) on
both sides of the equality we have the desired result for the
expected detection time in multiple periods setting.

Hence, for the attacker to be undetected during multi-
ple periodic attacks he should choose his inputs such that
EH1,1 [⌧m] < T . In the case of DoS attack, the attacker
should jam packets in each T �Ton component of m periods
in such a way that p̃e < p̃max for the detection horizon time
T , Lemma 3.3 can be used to calculate p̃max.

V. AN ILLUSTRATIVE EXAMPLE

In this section we validate our analysis for the single-
period attack case. We consider the following parameters
for the dynamical system: a = 0.5, the nominal input uk

is given by the LQG controller, process and measurement
noise statistics are �2

w = 0.5, �2
w = 1, and the measurement

channel erasure probability is pe = 0.2. The type (i) error
↵ and type (ii) error � for testing SPRT are set to 0.05 and
0.80. Finally, we set the detection horizon time to T = 50
samples. We consider the following attacks.
Case 1 (Integrity attack with no DoS attack): In this
scenario we inject malicious inputs (ua

k = 5uk) for a time
period Ton = 15 samples and remain inactive for rest of the
time. The expected time (EH1,1 [⌧ ]) for which the attacker
remains undetected turns to be greater than 18 time samples
(see (12)). To see if this result is valid, we performed
simulations for five different realizations (see Fig. 2) and
observe that the estimates are indeed correct.
Case 2 (Integrity attack with DoS attack): In this section we
consider the coordinated attack where the attacker in addition
to the integrity also casts DoS attack on the output sensor
for a time period Ton = T �Ton = 15 samples. Furthermore,
the erasure probability p̃e for DoS attack has been chosen
be less than p̃max. Fig. 3 shows the behavior of LLR for the
integrity attacks for five different realizations. We Observe
that the average detection time in this type of attack is more
than the case of individual attacks (i.e., EH1,1 [⌧ ]=18). This is
because of the fact that there is no increase in LLR whenever
the defender receives no measurement (see Section III-B).

Case 3 (Effect of p̃e on DoS attack): Finally, we study
the effect of p̃e (attacked channel erasure probability) on the
LLR of DoS attacks. Fig. 4 shows the LLR statistic for DoS
attack and it is clear that if the attacker chooses p̃e value
to be less than p̃max (0.30 in this case) the attack remains
undetected, which supports the claim of Lemma 3.3. This
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shows the importance of selecting p̃e so that the attacker
can cause maximum degradation to system without being
detected in DoS attacks and also increasing detection time
duration in integrity attacks (see case 2).
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Fig. 2. In the presence of integrity attacks the average detection time for
the five realizations is close to 18 which is consitent with EH1,1 [⌧ ]
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Fig. 3. Due to the coordination of DoS with integrity attack, detection
time of integrity attack in this scenario is more than the detection time of
individual attack (see Fig 2 for comparison).
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Fig. 4. As the DoS attacked channel erasure probability p̃e increases,
the detection time decreases. This result is consistent with the Lemma 3.3,
which provides upper bound for p̃e (0.30 in this case) to remain undetected.

VI. CONCLUSION

In this paper we study combined attacks against stochastic
cyber-physical systems, that is, we investigate the case where
the attacker is capable of compromising the system through
independent, and concurrent, attack modalities. By doing
so, the attacker avoids detection for a longer time, while
compromising the system to a greater extent. We derive

expressions for the detectability of combined attacks for
periodic (constant) attacks, and assuming that the defender
employs SPRT for detection. Our results show how the
system dynamics, noise statistics and attack parameters in-
fluence the expected detection time. Several aspects are left
for future investigation, including a generalization to non-
periodic attacks, and the study of combined, simultaneous,
and time-varying attacks.
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