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Abstract— This paper studies a detection problem for net-

work systems, where changes in the statistical properties of

an input driving certain network nodes has to be detected by

sparse and remotely located sensors. We explicitly derive the

Maximum A Posteriori (MAP) detector, and characterize its

performance as a function of the network parameters, and the

location of the sensor nodes. We show that, in the absence

of measurement noise, the detection performance obtained

when sensors are located on a network cut is not worse

than the performance obtained by measuring all nodes of the

subnetwork induced by the cut and not containing the input

node. Conversely, in the presence of measurement noise, we

show that the detection performance may increase or decrease

with the graphical distance between the input node and the

sensors. We view the propagative properties of the network as

an invariant enforced by the structure and weights, and we

remark that such invariant properties may be effectively used

for the design and operation of secure cyber-physical systems.

I. INTRODUCTION

Cyber-physical systems are extremely vulnerable, as re-
cently demonstrated by attacks on automobiles, medical
devices, and the energy grid. Such attacks not only violate
confidentiality by releasing personal information but, more
importantly, affect the integrity of the system often with
life threatening consequences. While numerous mechanisms
have been developed to protect the cyber components of a
cyber-physical system, protection of the physical layer and
of the core inter-layers functionalities remains an outstanding
problem. Here we highlight that the fundamental invariant

relations governing dynamical large-scale and interconnected
cyber-physical systems may in fact enable the design and op-
eration of secure and high-assurance cyber-physical systems.

The concept of invariants has a long history across a
number of domains, including formal methods for computing
systems [1], continuum physics [2], linear algebra [3], and
the biological [4] and behavioral sciences [5], [6]. Although
definitions for invariants vary, the term is broadly used to
describe properties of a system/object that are guaranteed
or remain unchanged under a transformation. In addition to
serve as descriptive tool, system invariants have been recently
used to verify correctness of system operations [7], [8], [9].

This study is concerned with detecting statistical abnor-
malities in a local stochastic input to a network, using remote
time-course measurements of the network dynamics. The
basic idea is that the network topological structure enforces
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invariants or relationships between signals at different lo-
cations in the network, which means that changes to the
dynamics at one location can potentially be detected using
measurement signatures at other locations in the network.
Thus, local changes implicate a predictable propagative re-
sponse across the network, which can in theory be used to
identify the change from sparse and remote measurements.

In this work, we consider a network system driven by a
stochastic signal, and we focus on the problem of detecting
abrupt changes in the input statistics from measurement taken
at different network nodes. This specific detection problem is
motivated by emerging monitoring needs for cyber-physical
networks, where intrusions or abnormalities in cyber and
human components may cause subtle changes in stochastic
driving or input signals, and ultimately incur significant
risk to the network operation. As it may be impractical or
impossible to directly monitor these input signals, we exploit
network invariants to identify changes in the driving signals.
Particularly, we quantify the relation between the detection
performance as a function of the network topological proper-
ties and the location of the sensor nodes. Our analysis leads,
for instance, to the counterintuitive results that, depending on
the network weights and structure, the detection performance
may improve as the graphical distance between the input
signal and the sensor node increases. Our results have
immediate applicability for the secure operation of cyber-
physical systems. In fact, our results (i) inform the optimal
positioning of sensors for the detection of failure of system
components or malicious tampering modeled by unknown
stochastic inputs, (ii) allow the detection of unexpected
modification of the system structure, because such changes
would inevitably modify the original detection profile, and
(iii) provide network design guidelines to facilitate or prevent
measurability of certain network signals.
Conceptual example A car is a prototypical cyber-physical
network, comprising diverse mechanical and electrical com-
ponents, a human operator (driver), and pervasive cyber-
systems (control systems, embedded computing, networking
features). The reaction of the human driver is a key input
to the vehicle’s dynamics of motion. Research on fatigue
and cognitive performance has shown that moderate fatigue
leads to subtle statistical changes in driver reaction times
and actions [10] (e.g. steering wheel deflections), including
especially an increase in variability in these characteristics.
The driver’s changed physiological response (e.g. reaction
time) is difficult to measure directly in real time, but these
subtle changes are reflected in other signals (e.g., the acceler-
ation and steering-wheel deviation profile), sensed distances
to other vehicles, etc. Many of these internal signals in the car
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are sensed, and could be used to detect moderate fatigue. In
a similar vein, cyber-attacks may alter driving signals in the
network (e.g., change the setpoint or inject variability/delay
in the cruise control). Likewise, these attacks could be
detected from remote measured signals, by exploiting the
essential invariants in the internal workings of the vehicle.
Related work Cyber-physical security has recently emerged
as an interdisciplinary research field at the intersection of
classic areas, including computer and information security
and fault detection and isolation [11], [12], [13], [14], [15].
While a large body of literature focuses on static cyber-
physical security, which defines both the attack and defense
mechanisms at a single time instance, more recent efforts
recognize the importance of dynamic cyber-physical security,
for which game theory [16], [17], [18], information theory
[19], [20], [21], and control theory [22], [23], [24] may
offer more applicable techniques. As a drawback of these
approaches, critical assumptions are made on the system
dynamics and structure, so that results are usually confined
to specific scenarios. Instead, in this work we propose to
build security mechanisms based on fundamental invariant
relations enforced by the laws of physics or careful design.
Although different systems may satisfy different invariants,
the core methods remain applicable across various domains.
Contribution The main contribution of this paper is twofold.
First, we formulate a detection problem for network systems,
where a change in the statistical properties of an input
affecting the behavior of some nodes must be detected from
sparse and remote measurements. We explicitly characterize
the Maximum A Posteriori detector, and quantify its error
probability. Second, we study the detector performance as
a function of the sensors locations. We prove that, in the
absence of measurement noise, the detection performance of
a set of sensors forming a cut of the network is as good
as the performance obtained by measuring all nodes of the
subnetwork identified by the cut and not containing the node
affected by the input. Thus, in the absence of measurement
noise the detection performance is non-increasing with the
graphical distance between the input node and the sensors
located on a network cut. Conversely, in the presence of
measurement noise, we show that the detection performance
may increase or decrease with the graphical distance between
the input node and the sensors, depending on the network
structure and weights. Our findings suggest that invariants
enforced by the network structure and weights can effectively
be leveraged to optimize design and operation of networks.
Paper organization The rest of the paper is organized as
follows. Section II contains our network model and prelim-
inary notions. The main results of this paper are presented
in Section III and Section IV. Finally, Section V contains an
illustrative example, and Section VI concludes the paper.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

To highlight the role of the network topology in detection,
we consider a simple linearized network model. Formally, a
network with n components or subsystems or nodes, labeled
i = 1, . . . , n, is considered. Each node i = 1, . . . , n is

assumed to have a scalar state xi[k], which evolves along
a discrete time index k = 0, 1, 2, . . . . The state vector
x[k] = [x1[k] · · ·xn[k]]T is governed by:

x[k + 1] = G(�)x[k] + eqw[k], (1)

where G(�) is commensurate with the n-vertex digraph �
but otherwise may be arbitrary, eq is a 0�1 indicator vector
where the q-th entry equals to 1, and w[k] is a stochastic drive
or input which enters the network through the q-th node.

Our primary focus is on distinguishing whether the
stochastic input w[k] is governed by a nominal statistical
model (e.g., for an alert driver or operational cyber system in
the car example), or alternately a model with altered statistics
(e.g., for a moderately fatigued driver or attacked cyber
system). Formally, for this study, the stochastic input w[k]
is assumed to be governed by one of two possible statistical
hypotheses, referred as Hypothesis 1 (H1) and Hypothesis
2 (H2). For simplicity, under hypothesis H1, the stochastic
input is assumed to be a stationary white process, with the in-
put w[k] at each time distributed as N (m1,�

2
1). Meanwhile,

under hypothesis H2, the stochastic input remains white, but
with modified distribution N (m2,�

2
2). The hypothesis that

is in force is denoted by H , i.e., H = H1 or H = H2, and is
assumed to remain the same over the duration of the process.
Two special cases of this formulation, where only the means
differ (m1 6= m2 but �2

1 = �
2
2) or only the variances differ

(m1 = m2 but �
2
1 6= �

2
2), will be considered in some of

our analyses. These cases are denoted as the mean-changed

model and variance-changed model, respectively.
The network dynamics are assumed to be measured at m

nodes, say J = {j1, . . . , jm}, where J is referred to as the
sensor set. Specifically, at each time k, a monitor receives

yJ [k] =

2

64
eT
j1

...
eT
jm

3

75x[k] + n[k],

where the observation noise n[k] is an i.i.d gaussian process
distributed at each time as N (n1,�2

n
I). Several of our

analyses will distinguish the role of measurement noise
in detection, hence the noise-free case (�2

n
= 0) will be

compared with the noisy case. The monitor aims to use the
measurements over the interval k = 0, . . . , kf � 1 to decide
which hypothesis is in force. To study the detection problem,
we combine the observations over the interval into a full
observation vector,

YJ =

2

64
yJ [0]

...
yJ [kf � 1]

3

75 .

The monitor is tasked with using a detector to identify the
hypothesis on the input signal, from the observation vector
YJ . Specifically, the detector maps the observation vector YJ

to a detected hypothesis bH , which may be either H1 or H2.
In this work, we will primarily consider maximum a poste-

riori probability (MAP) detection of the hypothesis by the
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monitor (results with respect to arbitrary optimal detectors
will be discussed in Section III). A MAP detector chooses
the hypothesis that has more likely given the observation
sequence as the detected hypothesis bH . In our formulation,
the MAP detector has been considered in the following way:

Pr(H = H2|YJ)
bH=H2

?
bH=H1

Pr(H = H1|YJ). (2)

The focus of our analysis is on characterizing the structure
and performance of the MAP detector in terms of the graph
�, so as to inform sensor placement for effective detection.
In other words, we study how the invariants imposed by the
network can be leveraged to identify the correct hypothesis.
The performance of the MAP detector is naturally measured
by its probability of error, which is the probability that the
detected hypothesis bH is not equal to the hypothesis in force,
H . The probability of error can be computed as

PE = Pr( bH = H2 |H = H1)Pr(H = H1)

+Pr( bH = H1 |H = H2)Pr(H = H2). (3)

Direct and indirect characterizations of the error probability
will be undertaken, to understand the relationship between
the graph topology and the detector performance.

III. ALGEBRAIC ANALYSIS OF THE MAP DETECTOR

Since the measurement signal is a filtration of a white
Gaussian input signal, classic results on hypothesis testing
using Gaussian observations can be used to obtain algebraic
characterizations of the detector and its performance. Then,
we use the results to extract structural and graphical insights.
Although the analysis holds for sensor set with multiple
nodes, for simplicity of presentation we focus on the case
where only one node is measured, i.e., J = j. We study the
MAP detector for the change in mean problem (�2

1 = �
2
2 =

�
2). Similar analysis holds for change in variance problem

also. From Bayes’ rule, Eq (2) can be rewritten as

fYj |H2
Pr(H2)

fYj

bH=H2

?
bH=H1

fYj |H1
Pr(H1)

fYj

,

where fYj is the joint probability density function (pdf)
of observation vector Yj and fYj |Hi

is the conditional pdf
of observation vector Yj given the hypothesis Hi, with
i 2 {1, 2}. Assuming fj � 0, it suffices to compare

fYj |H2
Pr(H2)

bH=H2

?
bH=H1

fYj |H1
Pr(H1). (4)

The noisy observations captured by the monitor at the desired
cut (or node) can be modeled by the following expression:

yj [k] = eT
j
x[k] + n[k],

= eT
j
x[k]

"
G

k
x[0] +

k�1X

i=0

G
k�(i+1)eqw[i]

#
+ n[k],

(5)

where yJ [k] and n[k] are the scalar versions of yJ [k] and
n[k] respectively. We focus on the case where x[0] = 0, and
obtain

Yj =

2

6664

eT
j
eq 0 · · · 0

eT
j
Geq eT

j
eq · · · 0

...
...

. . .
...

eT
j
G

kf�1eq eT
j
G

kf�2eq · · · eT
j
eq

3

7775

| {z }
R

2

6664

w[0]
w[1]

...
w[kf � 1]

3

7775

+

2

6664

n[1]
n[2]

...
n[kf ]

3

7775
. (6)

The statistics of Yj can be characterized as follows

E[Yj |Hi] = µi = miR1+ n1,

Cov[Yj |Hi] = ⌃ = �
2
RR

T + �
2
n
I,

(7)

and

fYj |Hi
=

1

(2⇡)kf/2
p
|⌃|

exp
✓
� (Yj � µi)T⌃

�1(Yj � µi)

2

◆
,

(8)

where i 2 {1, 2}, | · | is matrix determinant operator, 1 is
column vector of all 1, and I is standard identity matrix.1

Lemma 3.1: (MAP Detector) In the presence of additive,
white and Gaussian measurement noise, the decision rule
used by MAP detector for the hypotheses H1 and H2 is
given by:

(R1)T⌃�1
Yj

bH=H2

?
bH=H1

1

m2 �m1
ln
✓

Pr(H1)

Pr(H2)

◆

+

✓
m1 +m2

2
+ n

◆
(R1)T⌃�1

R1. (9)

Proof: By rearranging Eq (4) and taking the natural
logarithm on both sides, we obtain the following inequality

LLR(Yj) = ln
✓
fYj |H2

fYj |H1

◆ bH=H2

?
bH=H1

ln
✓

Pr(H1)

Pr(H2)

◆
. (10)

The left hand side of Eq (10) is often referred as log-
likelihood ratio (LLR). By substituting Eq (8) into LLR(Yj),

LLR(Yj) = (m2 �m1)(R1)T⌃�1


Yj �

✓
m1 +m2

2
+ n

◆
R1

�
. (11)

The claimed statement follows from Eq (10).
The detector equation Eq (9) bears an interesting interpre-

tation. To see this, we note that (R1)T⌃�1
Yj is the minimum

mean square error (MMSE) estimate of the input sequence
w[k] from the observation sequence. The detector can thus be
viewed as comparing the mean value of the input sequence
estimate with the midpoint of the filtered means for the two
hypotheses (with a correction for a priori probabilities). We
next characterize the error probability of the MAP detector.

1See Remark 1 for a discussion of the invertibility of ⌃.
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Lemma 3.2: (MAP detector’s Error Probability) The
probability of error PE in the detection process is given by:

PE = Pr(H1)Q

0

@
ln
⇣

Pr(H1)
Pr(H2)

⌘

2�
+ �

1

A+

Pr(H2)Q

0

@
ln
⇣

Pr(H2)
Pr(H1)

⌘

2�
+ �

1

A , (12)

where

� =
(m2 �m1)

2

q
(R1)T⌃�1(R1), and

Q(x) =
1p
2⇡

1Z

x

exp
�
�t

2
/2
�
dt.

The proof of Lemma 3.2 follows because the observations
are Gaussian [25], and the details are omitted here.

Remark 1: (Invertibility of ⌃) The matrix ⌃ is invertible
for �

2
n
6= 0. For the case that �n = 0, the matrix ⌃ may

or may not be invertible. It is invertible in the case that the
stochastic input and the measurement are collocated in the
network (eq = ej). If the input and output are at different
locations, two situations may result. In the atypical case that
e
T

j
G

k
eq is identically zero for all k, then the stochastic input

shows no signature in the measurement. In this case, the
MAP detector simply selects the most likely a priori hypoth-
esis, and the probability of error is the same as the a priori.
This case corresponds to the circumstance that all modes
of the network dynamics are either uncontrollable from the
input location or unobservable from the output location.
Alternately, if eT

j
G

k
eq is non-zero for some k, then a lower-

left block of ⌃ can be shown to be invertible, which means
that a subset of the input sequence (w[0], . . . , w[kf �k]) can
be exactly recovered from the measurement sequence, while
the remaining points in the input sequence are not reflected
in the measurements. Based on this discussion, a revised
expression for the optimal detector can be developed, which
permits computation of the detector and its error probability
[24], [26]. Detection when measurement noise is negligible
is discussed further in Section IV. ⇤

Remark 2: (Asymptotic probability of error) Provided
that G is stable, the probability of error can be shown to
follow a dichotomy. Either e

T

j
G

k
eq is identically zero for

all k, in which case the probability of error is identical to
the a priori regardless of the initial condition. Otherwise, the
probability of error can be shown to approach 0 exponentially
with respect to kf . Details of the argument are omitted; the
reader is referred to [24] for a similar development. ⇤

IV. NETWORK ANALYSIS OF THE MAP DETECTOR

The graphical distance from the input location to the
monitoring location(s) should influence the MAP detectors
performance. Naively, one might expect monitors that are
close to the input to be able to better distinguish the input
characteristics (specifically, the mean and variance of the
input signal). However, previous studies have shown that
network structure may amplify a driving input over a distance

and implicate nonminimum-phase dynamics [27] and hence,
it is far from clear whether spatial proximity indeed yields
improved detection. We study this question here.

In this section, we verify that graphical proximity does
modulate detection performance, in the following sense. If
sensors are placed in a such a way as to partition the
graph, then a MAP detector using these sensors outperforms
any other detectors that uses sensors in the partition not
containing the input. Thus, closeness to the input location
necessarily permits more effective detection, provided that
the sensors completely separate the input. This result is
formalized next; we assume in the analysis that x[0] is
independent of the future input sequence w[0], . . . , w[kf�1].

To formalize the result, a sensor set J1, which forms a
node-cutset of the graph � is considered. The probability
of error of the MAP detector using YJ1 is denoted by
E1. This detector performance is compared to the detection
performance of a second sensor set J2. The sensor set J2

may contain (i) any nodes in the partition of � formed by
J1 that does not contain the input location and (ii) any nodes
in J1. The probability of error for the MAP detector , which
uses the observations YJ2 is denoted as E2.

Lemma 4.1: (Error probability with dependent measure-
ments) Consider MAP detection of a probabilistic hypothesis
using a measurement Y . Alternatively, consider detection
using Z = f(Y ) + N , where f(.) : Rn ! R

n and N is a
stochastic signal independent of hypothesis. The probability
of error EY when Y is used is no bigger than that of
probability of error EZ when Z is used, that is, EY  EZ .

Lemma 4.1 has been described in standard texts on hy-
pothesis testing [26]. Its proof is evident since Z can be
computed from Y and hence the detector for Z can always
be used when Y is available. This Lemma will be used to
compare the performance of the two detectors.

Theorem 4.2: (Error probability for sensors on a net-
work cut) The MAP detector error probability for the par-
titioning sensor set is no bigger than that for the separated
sensor set, that is, E1  E2.

Proof: The main idea of the proof is to show that YJ2

exhibits a functional dependence on YJ1 , where upon Lemma
4.1 can be applied. To show the functional dependence,
first notice that for elements in J2 that are also in J1,
the corresponding entries in ~yJ2(k) are identical to entries
in ~yJ1(k) and hence exhibit a functional dependence. It
remains to characterize the entries in ~yJ2(k) corresponding
to elements in J2 that are not in J1, for k = 0, . . . , kf .

To do so, consider the union of the partitions of � by J1

that do not include the input location, which we label as bJ .
Let bx[k] contain the states of the nodes in these partitions
i.e., in bJ at time k. We claim that bx[k], k = 0, . . . , kf can be
computed exactly from bx[0] and ~yJ1 [k], k = 0, . . . , kf . To
see this, notice that when ~yJ1 [k] is known for k = 0, . . . , kf ,
bx[k] can be computed via a linear state equation where
in ~yJ1 [k] serves as an input, without knowledge of the
remaining states. Specifically, bx evolves according to

bx[k + 1] = bGbx[k] +Ga~yJ1 [k],
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where, bG is the principal sub matrix of G corresponding to
the nodes in bJ , and Ga is the sub matrix of G whose rows
correspond to bJ and whose columns correspond to J1. Thus,
it follows that

bx[k] = bGkbx[0] +
k�1X

i=0

bGk�(i+1)
GabyJ1 [i]. (13)

Finally, we notice that the entries in ~yJ2 [k] that do not
correspond to J1 are in bx[k]. Thus, from Eq (13) it follows
that ~yJ2 [k]. Hence YJ2 can be written as linear function of
YJ1 :

YJ2 = MYJ1 + Lbx[0] (14)

Since bx[0] is independent of the hypothesis, Lemma 4.1 can
be applied, and E1  E2. This completes the proof.

The above analysis indicates that, when the measurement
noise is negligible, sensor sets nearer the disruption location
always achieve a lower detection error probability compared
to those far away from the disruption, for any specified mea-
surement horizon. Interestingly, however, in the asymptote of
a long measurement horizon, the detector performance be-
comes comparable for any measurement location. To see this
for the mean-changed model, let us first compare the detector
performance for a particular measurement location with the
performance of a MAP oracle detector which can directly
access the stochastic input sequence w[0], . . . , w[kf�1]. The
error probability of the MAP oracle detector is well-known
to approach Q(m2�m1

2�

p
kf ) asymptotically as kf becomes

large, provided that there is some a priori probability of each
hypothesis (see [26]). From the asymptotic characterization
of the Gaussian cumulative distribution, the error probability
of the oracle detector is asymptotically exponential in kf ,
specifically given by Ce

�kf (m2�m1)

4� for a fixed constant C.
Let us now consider MAP detection from noiseless mea-

surements at any sensor set J . Clearly, the detection error
probability cannot be less than that of the MAP oracle de-
tector, since the measurements are a function of the stochastic
input sequence. Also, the detection error probability is less
than the MAP error if only one node j 2 J is measured.
In section III, we have already established that either: 1)
the detector cannot improve on the a priori error probability
(for the case that eT

j
G

z
eq is identically 0 for z), or 2) the

detector asymptotically achieves a zero error probability.Let
us refer to nodes for which the second case is in force as valid

measurement nodes. For a valid measurement node j, let us
label the smallest nonnegative integer z such e

T

j
G

z
eq 6= 0 as

bzj . From Eq (7) and assuming no measurement noise, it im-
mediately follows that part of the stochastic input sequence,
specifically w[0], . . . , w[kf�bzj�1], can be recovered exactly
from Yj . Since these samples of the stochastic input sequence
can be recovered, the error probability should be no bigger
than that of an almost oracle detector that directly uses
w[0], . . . , w[kf � bzj � 1] for detection. Thus, it immediately
follows that the error probability when the valid node j is
measured is upper bounded by Ce

�(kf�bz)(m2�m1)

4� .
Based on the above discussion we have that:

(i) For any sensor set J containing a valid measurement
node, the detection error probability is asymptotically
upper bounded and lower bounded by an exponential
function of kf with rate constant m2�m1

4� .
(ii) For any sensor set J containing a valid measurement

node j, the detection error probability is upper bounded
by a multiple of the oracle detector’s error in the
asymptote. The scale factor is at most e

bzj(m2�m1)

4� .
Remark 3: (Bounds on the error probability) From

the Cayley-Hamilton theorem, it follows that bzj is upper
bounded by the dimension of the network n for any valid
measurement node, and hence the ratio between the error
probability for any two measurement locations is asymptot-
ically upper bounded by e

n(m2�m1)
4� . ⇤

Remark 4: (Error probability for Metzler networks) In
the special case that G is an irreducible Metzler matrix, then
all nodes are valid measurement nodes. Further, bzj is equal
to the graphical distance between node j and node q in the
network. Thus, the ratio between the error probability for any
two measurement locations is asymptotically upper bounded
by e

D(m2�m1)
4� , where D is the diameter of the network. ⇤

V. AN ILLUSTRATIVE EXAMPLE

In this section we discuss an illustrative example to
validate our analysis. Consider a Toeplitz line network with
20 nodes and network matrix

G =

2

66666664

a b 0 · · · 0 0
c a b · · · 0 0
0 c a · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a b

0 0 0 · · · c a

3

77777775

. (15)

Let the stochastic input affect the first network node, that is,
q = 1 in Eq (1). Let m1 = 0.25 and m2 = 0.75 be the two
possible means of the input, with variance �

2
1 = �

2
2 = 0.5.

Let the measurement noise have zero mean and variance
�
2
n
= 1. Finally, let the prior probabilities of each hypothesis

be 1/2, and the observation vector contain 100 samples. To
have a better understanding of the detector performance we
considered different set of weights a, b and c. Our results are
illustrated in Fig. 1 and 2. It should be observed that different
network weights ensure different invariant properties for
the propagation of signals and detection performance. In
particular, from Fig. 2, the probability of error may either
decrease or increase withe the graphical distance between
the input and the sensor. We regard this property as a
network invariant, which is enforced by the network structure
and weights, and that can be exploited to detect network
alterations by comparing measurements at different network
nodes. While this work shows the existence of network
invariants that may be used for change detection, detailed
characterization and study are left for future research.

VI. CONCLUSION

This paper studies a detection problem for networks,
where changes in the statistics of an input affecting certain
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Fig. 1. In the absence of measurement noise the probability of error
increases monotonically with the graphical distance between the input and
the sensor, independently of the network weights. This result is consistent
with Theorem 4.2, because each node is in fact a vertex cut.
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Fig. 2. In the presence of measurement noise, the probability of error
may increase or decrease with the graphical distance between the input
and the sensor. This property can be considered a network invariant, and is
consistent with Lemma 3.1, where we see that the network dynamics and
the measurement noise covariance matrix both appear in the detector.

nodes have to be detected from remotely located sensors.
We provide analytic expressions for the MAP detector, and
we analyze the relation between the detector performance,
the location of the sensor nodes, and the network weights.
We show that, in the absence of measurement noise and
when sensors are positioned on a network cut, the detector
performance is a nondecreasing function of the graphical
distance between the input node and the sensors. Instead,
in the presence of measurement noise, we show that the
detector performance may improve or deteriorate when the
sensor node is further away from the input node.
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