
Parameter Estimation in Ill-conditioned Low-inertia Power Systems

Rajasekhar Anguluri, Member, IEEE, Lalitha Sankar, Senior Member, IEEE, and Oliver Kosut, Member, IEEE

Abstract— This paper examines model parameter estimation

in dynamic power systems whose governing electro-mechanical

equations are ill-conditioned or singular. This ill-conditioning is

because of converter-interfaced power systems generators’ zero

or small inertia contribution. Consequently, the overall system

inertia decreases, resulting in low-inertia power systems. We

show that the standard state-space model based on least squares

or subspace estimators fails to exist for these models. We over-

come this challenge by considering a least-squares estimator

directly on the coupled swing-equation model but not on its

transformed first-order state-space form. We specifically focus

on estimating inertia (mechanical and virtual) and damping

constants, although our method is general enough for estimating

other parameters. Our theoretical analysis highlights the role of

network topology on the parameter estimates of an individual

generator. For generators with greater connectivity, estimation

of the associated parameters is more susceptible to variations

in other generator states. Furthermore, we numerically show

that estimating the parameters by ignoring their ill-conditioning

aspects yields highly unreliable results.

I. INTRODUCTION

Accurate knowledge of power system model parameters,
including inertia and damping, is essential to assess operating
states, perform dynamic simulations, and study stability mar-
gins. Recently, with increasing penetration of inverter-based
(IB) distributed energy resources (DERs) in the bulk power
system, the effective system inertia is decreased, making it
challenging to stabilize demand-supply mismatch. Further,
this increase in IB-DERs significantly increases the number
of unknown system parameters to estimate.

Estimating dynamic parameters of synchronous machines
and other network devices and loads, is a classical prob-
lem [1], [2]. Numerous algorithms have been proposed for
parameter estimation, both in the presence and absence of
closed-loop controllers using local or wide-area ambient
measurements, including [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. Within this body
of work, some approaches use white box models, wherein
the model structure is completely known and deterministic
(e.g., model structures given by Newton’s laws, mass and
energy conservation principles). In power systems, Heffron-
Phillips models (fourth order and beyond) have been a
mainstay of estimation algorithms. The opposite extreme are
black box models, or purely data-driven stochastic models in
which no prior knowledge is assumed, and an input/output
relation is derived from measurements. Examples include
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modal analysis, dynamic equivalents, and Koopman meth-
ods. Although black box methods are extremely useful for
wide-area monitoring, they have limited utility for planning,
contingency, and stability analysis.

Another line of research focuses on grey box models [17],
[18]. These models combine the advantages of the white
and black box approaches to exploit prior knowledge of
physical relationships or model structure, where possible, and
learning unknown parameters from data. This methodology
is particularly relevant in the context of IB-DERs, which
inevitably introduce many unknown parameters [19], [20],
[21], [22]. However, there are many shortcomings in the
existing literature; most papers: (i) focus on net inertia1 rather
than the inertia of each device or each area as they connect
to each other; (ii) focus on estimation in the presence of tran-
sient disturbance with little work on ambient disturbances;
and (iii) do not consider the effect of frequency and voltage
dependent loads, leading to large (inertia) estimation errors
(up to 40% [23]); see [24], [25], for a recent account on
various parameter estimation in low-inertia systems.

We put forth a simple strategy for overcoming the above
limitations using a simple constrained least squares estimator
to estimate parameters using ambient measurements. Least
squares type estimators are already used for estimating inertia
in power systems; however, these estimators assume that
the inertia is strictly greater than zero. This assumption im-
plies that the electro-mechanical dynamics are well defined.
However, this assumption does not hold for converter-based
generators. For e.g., droop-control based generators provide
zero inertia [22]. Consequently, the electro-mechanical dy-
namics are not well-defined or ill-conditioned, thereby giving
rise to a descriptor system (see Section III for details). We
develop a framework for parameter estimation for these sys-
tems, with special attention to inertia and damping. Beyond
the motivating example of parameter estimation in power
systems, our results apply more broadly to other engineering
systems modeled using second-order differential equations,
such as structural mechanical and acoustic systems and fluid
mechanics. We summarize our contributions below:

(i) For low-inertia power systems consisting of syn-
chronous and converter-interfaced generators, we study
a constrained least-squares estimation problem that
allow us to tackle systems with exactly zero-inertia.

(ii) We highlight the role of network connectivity on the
estimation performance. Specifically, using the closed-
form formulas of the estimators, we show that for
generators with greater connectivity, estimation of the

1Estimated as a weighted average of single area inertia estimates.
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associated parameters is more susceptible to variations
in other generator states.

(iii) Our simulation results on the IEEE 39 bus system show
that estimating the parameters by ignoring their ill-
conditioning aspects yields highly unreliable results

II. DYNAMICS OF LOW-INERTIA POWER SYSTEMS

We introduce the frequency dynamics for a low-inertia
power system, comprised of multiple synchronous generators
(SGs) and converter-interfaced distributed energy resources
(DERs). We later use these models for parameter estimation
subject to suitable physical constraints.

We model a power network of N buses with an undirected
graph G := (V, E), where nodes V = {1, . . . , N} and edges
E ✓ V⇥V denote buses and transmission lines, respectively.
For a i-th node in V we associate a generator (synchronous or
converter-faced) whose frequency response around a steady
state is governed by the swing equation [22], [26], [27]:
2Hi

!0
�!̇i(t)=[�Pm,i(t)��Pe,i(t)]� FCi(t) + ✏̃i(t), (1)

where !0 = 120⇡ is the rated angular frequency, �!i(t) =
!i(t) � !0, and 2Hi/w0 is the inertia constant. �Pm,i(t)
is the deviation from the steady mechanical power injection.
�Pe,i(t) is the deviation from the electrical power output,
and ✏̃i(t), a zero-mean Gaussian process with a known
variance, models the ambient fluctuation in loads as well as
process noise. Further, �Pe,i(t) equals the sum of deviations
of the power flows on the lines connected to node i [26], [27]:

�Pe,i(t) =
X

ij2E
�Pij(t) = �ij(��i(t)���j(t)), (2)

where �ij= |Vi||Vj |bij with bij>0 denoting the susceptance
and |Vi|, |Vj | are the rated voltage magnitudes. The angular
deviation ��i(t) is obtained by integrating �!i(t).

The frequency controller output FCi(t) enforces the sys-
tem frequency stability due to a large imbalance between the
mechanical and electrical power. In SGs, primary frequency
controllers (PFCs) provide the frequency support. On the
other hand, in grid-forming converters, the behavior of PFC
is emulated by fast frequency regulators. We assume that
this goal is achieved by a proportional feedback control that
adjusts the power generation set-point based on the frequency
deviation: FCi(t) = Ki�!i(t)/w0 [22] (see Remark 1).

We assume that some of the loads depend on the sys-
tem frequency. Similar to frequency controllers, these loads
provide a damping stabilizing effect on the frequency. We
model these loads as �Pi,Load(t) = Di,load�!i(t)/w0, where
Di,load is the damping coefficient. By slight abuse of notation,
we denote the total frequency support by FCi(t) = (Ki +
Di,load)�!i(t)/w0 and let Di = Ki +Di,load.

We drop � notation in the state variables. From (1) and
(2), and our discussions on the frequency controller, we can
express the dynamics for all generators compactly as


I 0
0 M

�

| {z }
,E


�̇(t)
!̇(t)

�
=


0 I

�H� �D

�

| {z }
,A


�(t)
!(t)

�
+


0

✏(t)

�
, (3)

where � = [�1, . . . , �N ]T 2 RN and !, �̇, !̇, ✏ and 0 are
defined similarly. The i-th component of the process noise
✏(t) is given by ✏i(t) = ✏̃i(t) +Pm,i(t). The matrices I and
0 are N ⇥N identity and all-zeros matrices. The Laplacian
matrix H� is defined as [H� ]ij = ��ij for (i, j) 2 E and
[Hg]ij = 0 otherwise; and [Hg]ii =

P
(i,j)2E �ij . Finally,

M = diag(M11, . . . ,Mii) and D = diag(D11, . . . , DNN )
are diagonal inertia and damping matrices, where Dii =
Di/w0 and Mii = 2Hi/w0.

From (3) note that the Laplacian Hg is determined by the
line susceptances, and hence, it is independent of the type of
the generator (synchronous or converter-based). Thus, each
generator is characterized by Mi and Di. However, we show
that the estimates M̂i and D̂i are influenced by Hg . The
effect of Hg is ignored in prior works, which focus on either
estimating each machine’s inertia or the aggregated inertia.

The (classical) model in (3) is a starting point for many
downstream tasks, including control design, storage place-
ment, oscillation localization, and stability analysis. In these
applications, the model in (3) is simplified by left multiplying
E

�1 on both sides of (3). Unfortunately, in low-inertia power
systems, this kind of simplification is not possible because
the inertia constant Mi could be small for VSMs and exactly
zero for droop-control based generators [?]. Consequently,
E in (3) is not invertible. In this case, this as a linear
descriptor or differential-algebraic system. The latter term
derives from the fact that some of the equations represented
by (3) are purely algebraic (and not differential) in that the
left-hand side is zero. These systems appear in the field of
robotics, economics, and circuits; in power systems, they
also arise when generator dynamics and algebraic power-flow
algebraic equations explicitly are considered together. In our
case, a descriptor system arises due to the ill-conditioning
of parameters caused by the low inertia of IB-DERs. In the
following section, we discuss why parameter estimation is
difficult in these systems and then describe a new strategy
to obtain reliable parameter estimates.

Remark 1: In general, the frequency controller might not
be a simple proportional control and can be of higher order;
for example, in SG, turbine dynamics contribute to FCi(t).
However, for ease of analysis, we neglect these dynamics.
This approximation is valid for converter-interfaced genera-
tors because the controller time constants are small; however,
this approximation might not be accurate for SGs. ⇤

III. STRUCTURE PRESERVING ESTIMATION PROBLEM

For the continuous-time model in (3), we first obtain a
discrete-time model using Euler’s method. We then formulate
a constrained least squares optimization problem for estimat-
ing the parameters using this discrete-time model.

We assume that we can estimate the generator states � and
! using PMU measurements [?]. Let k = 0, 1, . . . and define
z[k] , z(kTs), where Ts is the discretization step (hereafter,
the sampling period) and z[k] = [�[k]T ![k]T]T. The rela-
tionship among Ts, resolution of the PMU measurements,
and the time-scale of the estimation horizon is explained in
great detail in [28]. Using the Euler-Mayurama discretization



method, we get the discrete-time dynamics [29], [26]:

E(z[k + 1]� z[k]) = TsAz[k] +


0

r[k]

�
, (4)

where r[k] is the discretized process noise (cf. ✏(t) in (3)),
and r[k] ⇠ N (0,⌃✏), where ⌃✏ = Tsdiag(�2

1 , . . . ,�
2
N ). The

diagonal structure of ⌃✏ is because the ambient fluctuations
are spatially uncorrelated across different buses.

The standard practice in the literature [30], [26], [27], [22],
[19] is to re-write (4) as

z[k + 1] = (I + TsE
�1

A)z[k] + E
�1


0

r[k]

�
, (5)

and estimate Ad , (I + TsE
�1

A) using z[0], . . . , z[T � 1].
This naı̈ve estimate has many drawbacks: (i) Ad might not
be well-defined if E is not invertible, which is the case for
droop-control based generators, as discussed earlier; (ii) E�1

adversely affects the noise vector by distorting its spatially
uncorrelated property; and (iii) decomposing the estimate of
Ad to uniquely estimate M and D is impossible in general.

We overcome the limitations of the naı̈ve estimator by con-
sidering the following constrained least-squares optimization
that does not require E to be invertible:

{M̂, D̂} = argmin
M,D2D

T �1X

k=0

kE(z[k + 1]�z[k])�TsA z[k]k22

s.t. 0  Dii  Dmax, for all i, (6)
Mi = 0, for i 2 VDC ,

where D is the set of non-negative diagonal matrices; Dmax
is a known term that imposes practical limits on D; and VDC

are the nodes corresponding to the droop-control generators.
The equality constraint in (6) ensures that the estimate M̂i,
for i 2 VDC , is zero. From (5), we note that the expression
inside the norm term in (6) is the process noise [0T r[k]T]T.
Thus, the proposed estimator attempts to find parameters that
best explain the variations of the ambient fluctuations over
the time horizon k = 0, . . . , T � 1.

We rewrite (6) in the standard least squares form. Define
the vectors m = [M11, . . . ,MNN ]T, d = [D11, . . . , DNN ]T.
Let !̃[k] = ![k + 1]�![k] and �0:T �1 = [�[0], . . . , �[T �
1]]T. Let Diag(!̃[k]) be the diagonal matrix with the entries
of !̃[k] on the main diagonal, and define the data matrix:

W0:T �1 =

2

6664

Diag(!̃[0]) TsDiag![0]
Diag(!̃[1]) TsDiag![1]

...
...

Diag(!̃[T � 1]) TsDiag![T � 1]

3

7775
. (7)

Then the optimization in (6) can be compactly expressed as

{m̂, d̂} = argmin
m,d2RN

����W0:T �1


m
d

�
+ Ts(I ⌦H�)�0:T �1

����
2

2

s.t. 0  d  Dmax1, and �


m
d

�
= 0,

(8)
where 1 is the all-ones vector; I is an T ⇥T identity matrix;
and ⌦ is the matrix Kronecker product. The n⇥2N selection

matrix � (with n denoting the size of VDC) selects the entries
of m associated with the droop-control generators.

Optimization problems similar to (8) are recently studied
in the literature of inertia and damping estimation [?]. These
studies, however, ignore the zero-inertia constraints and H�

term; hence, they require damping constraints to make the
estimation problem mathematically well-posed. In contrast,
the problem in (8) is well-posed even when we ignore the
damping constraints, thereby making it useful for the cases
where Dmax is unknown. Using the special case below, we
study the role of topology, encoded in the susceptance matrix
Hb, on the parametric estimates of the i-th generator.

Special case (unconstrained optimization): Suppose that
W0:T �1 has full column rank.2 Let us ignore the constraints
in (8). Then, the problem in (8) reduces to the unconstrained
least squares problem, which admits the following solution:


m̂
d̂

�
= �TsW

+
0:T �1(I ⌦H�)�0:T �1, (9)

where W
+
0:T �1 is the pseudo-inverse of W0:T �1, and is given

by W
+
0:T �1 = (WT

0:T �1W0:T �1)�1
W

T
0:T �1. By exploiting

the diagonal structure of the blocks in W0:T �1 in (7), we
can express estimates at the i-th generator node as

m̂i = �
NX

j=1

[H� ]i,j

 T �1X

k=0


ci,2

ci,3
!̃i[k]�

ci,1

ci,3
!i[k]

�
�j [k]

!

d̂i = �
NX

j=1

[H� ]i,j

 T �1X

k=0


ci,0

ci,3
!i[k]�

ci,1

ci,3
!̃i[k]

�
�j [k]

!
,

(10)

where the constants ci,3 = ci,0ci,2�c
2
i,1; ci,0 =

PT �1
k=0 !̃

2
i [k];

ci,1 =
PT �1

k=0 !̃i!i[k]; and ci,2 =
PT �1

k=0 !
2
i [k]. In the above

expressions, we set Ts = 1 for simplicity. The constants
ci,0, ci,1, and ci,2 depend on the i-th generator’s frequencies.
They determine the contribution of the frequency and its rate
of change !̃i[k] = ![k + 1]� ![k] on the i-th estimate.

The i-th inertia (or damping) estimate in (10) is a weighted
average of the suceptance values of the lines connected
to the i-th node. These weights depend both on the i-th
node’s frequencies and the angles of all generators. Thus,
for generators with greater connectivity, estimation of the
associated parameters is more susceptible to variations in
other generator states. Consequently, these parameters cannot
be estimated using local measurements. But it makes sense
to estimate the inertia of a largely isolated microgrid as it
has a few or no connections with other parts of the network.
Finally, we can only estimate the parameters of a generator in
a large system when both the local frequency and the power
measurements are available. Recall from (2) that the power
deviations encode the topological information.

We comment on the statistical properties of the estimate
in (9). Because w(t) and �(t) in (3) are correlated random
processes, W0:T �1 and �0:T �1 are random and correlated.

2For an appropriate choice of N , in general, the full column rank assump-
tion holds because of the presence of additive noise in the measurements.



Thus, characterizing the distribution of the estimate in (9) is
hard. A workaround is to interpret the optimization in (8) as
a means for obtaining the parameters of the linear model:

�Ts(I ⌦H�)�0:T �1 = W0:T �1


m
d

�
+ ⇣, (11)

where ⇣ and the filtered process noise accumulated over time
have same distributions; however, W0:T �1 and �0:T �1 are
responses due to the initial state. Hence, they are determin-
istic terms. With these assumptions, it follows that


m̂
d̂

�
⇠N

✓
m⇤

d⇤

�
, T

2
sW

+
0:T �1⌃⇣(W

+
0:T �1)

T

◆
, (12)

where (m⇤
,d⇤) is the unknown truth, and ⌃⇣ is the covari-

ance matrix of ⇣. The characterization in (12) holds even for
the non-Gaussian process noise, thanks to the asymptotic (in
T ) normality of the least squares estimator (see [17]). If ⌃⇣ is
diagonal, W+

0:T �1⌃⇣(W
+
0:T �1)

T is a 2⇥2 block matrix with
diagonal blocks. The off-diagonal blocks capture correlations
between the inertia and damping estimate at a given node.
Thus, the variance of the estimates are not influenced by
the variations in other generator states. Unfortunately, ⌃⇣

cannot be diagonal because the process noise gets filtered
through the dynamics in (4); and hence, ⌃⇣ is dense, and so
is the covariance matrix in (12). Hence, the variance of each
estimate depends both on the network and the variations in
other generator states.

The discrete-time variance �2
i Ts of r[k] (see (4)) due to the

process noise and loads is hidden in the covariance matrix
Cov(⇣). By assuming �

2
i = �

2, for all i 2 N , we can write
Cov(⇣) = �iTsQ, where the matrix Q solely depends on
the system dynamic matrices and the topology. Thus, the
covariance term in (12) is effectively scaled by T

3
s �

2. This
result highlights the trade-off between the sampling time and
the variance of load fluctuations, allowing us to down- or up-
sample measurements to improve the estimates’ quality. For
instance, for highly fluctuating loads (higher values of �

2),
we can down-sample the measurements for computational
speedup with minimal loss in the estimation performance.

We close this section by pointing out the importance of
the structure preserving estimation problem in (6) in the case
where we have access to a few generator states but not all of
them. Here, we cannot rewrite (6) as the constrained form in
(8). Nonetheless, we can use expectation-maximization (EM)
type algorithms, which at high level solves the optimization
in (8), but the data matrix W0,T �1 should be replaced with
Kalman estimates. We leave this study for the future.

IV. SIMULATION RESULTS

We illustrate the performance of the structure-persevering
inertia and damping constants estimator in (8) on the IEEE
39-bus, 10-generator benchmark system. See Ref. [26] for a
single line diagram of the topology and the location of the
generator buses. The inertia constants of the generators are
summarized in Table I and all damping constants are set to
d
⇤
i = 0.0531 p.u. We use Kron-reduction technique [26] to

obtain the matrix H� in (3). We obtain the initial values of

(�(t),!(t)) and the line susceptance values from [31]. We
set the discretization time-step Ts = 1/60 sec. We use these
parameter values to generate the frequency measurements
using the discrete-time model in (4).

TABLE I: IEEE 39-bus synchronous generator inertia (p.u.)

m⇤
1 m⇤

2 m⇤
3 m⇤

4 m⇤
5

0.2228 0.1607 0.1873 0.1517 0.1379
m⇤

6 m⇤
7 m⇤

8 m⇤
9 m⇤

10

0.1846 0.1401 0.18289 0.1830 2.6526

A. Case study 1: estimation performance and validation
First, we explore the case where there are no converter-

based generators, and the inertia constants of all synchronous
generators are not close to zero; see Table I. We also ignore
the damping constraints for simplicity. Thus, we consider the
unconstrained optimization problem.

Our first simulations focus on the inertia and damping
estimation error behavior as a function of the estimation time
T . We define the following error metrics:

Eint =
1

10

10X

i=1

(m̂i � m̂
⇤
i )

2 ;Dint =
1

10

10X

i=1

(d̂i � d̂
⇤
i )

2
. (13)

These metrics capture estimation error (squared) of a random
generator node. We set the process noise standard deviation
� = 0.01 p.u. [26]. Fig. 1 illustrates Montecarlo estimate of
the mean and the standard deviation (no. of. trails = 100)
of the error metrics. We note that more measurements are
required to estimate damping accurately than inertia. This
is because the inertia estimate in (10) depends more on
the difference of the frequencies at k and k + 1. Thus, the
process noise is less in ![k + 1] � ![k] than compared to
![k]. On other hand, the damping estimator rely more on
![k]; and hence, its performance is strongly influenced by
the process noise. As a result, it requires more measurements
to accurately estimate the true damping.

Our second simulations focus on the probability distribu-
tion of the estimation error for a random generator. We chose
i = 3. Fig. 2 and Fig. 3 illustrate empirical histograms for
the estimation time horizons T = 50 and T = 200.

B. Case study 2: comparison with the naı̈ve esimator in [26]
Next, we examine the estimator’s performance in the pres-

ence of both synchronous and converter-faced generators. For
the latter, we chose VSMs, whose behavior is emulated by
setting the inertia constants to be close (but not exactly) to
zero. In particular, we set m

⇤
3 = 0.0019, m

⇤
4 = 0.0015,

and m
⇤
5 = 0.0014. We also compared the performance of

our estimator with the naı̈ve estimator that first estimates
Ad in (5) and then extract the inertia constants. We estimate
Ad using the maximum-likelihood technique suggested in
[26]. We report our findings in Table II. Therein, the values
in the parenthesis indicate relative estimation errors. For all
the generators, including the VSMs, our structure preserving
estimator quite accurately estimated the inertia constants.
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Fig. 1: Estimation error as a function of estimation time horizon.
The shaded region denotes the standard deviation (averaged over
100 trails). From both the top and bottom panels, we clearly see
that the average error in (13) decreases by increasing T . However,
compared to inertia, we need more measurements to estimate
damping accurately.

TABLE II: IEEE 39-bus synchronous generator inertia (p.u.)

True our method naı̈ve estimator
m

⇤
1 = 0.2228 0.2228 (-0.005e-03) -0.0384 (-1.1724)

m
⇤
2 = 0.1607 0.1607 (-0.251e-03) -0.0014 (-1.0090)

m
⇤
3 = 0.0019 0.0019 (-0.042e-03) -0.0008 (-1.4535)

m
⇤
4 = 0.0015 0.0015 (-0.031e-03) -0.0002 (-0.8677)

m
⇤
5 = 0.0014 0.0014 (-0.873e-03) -0.0002 (-1.1791)

m
⇤
6 = 0.1846 0.1845 (-0.054e-03) -0.0915 (-1.4959)

m
⇤
7 = 0.1401 0.1401 (-0.019e-03) -0.0864 (-0.3833)

m
⇤
8 = 0.1289 0.1289 (-0.015e-03) -0.0144 (-0.8880)

m
⇤
9 = 0.1830 0.1830 (-0.023e-03) -0.0369 (-1.2015)

m
⇤
10 = 2.6526 2.6526 (-0.004e-03) 1.6507 (-0.3777)

The simulations presented in this section supported many
of our theoretical observations and outperformed methods
that do not consider the ill-conditioning aspects as in studies
in case 2. These observations have implications for design
and implementation of real-time algorithms for estimating
inertia and damping in low-inertia systems.

V. CONCLUDING REMARKS

A simple observation that the parameters of multiple areas
or generators could be directly estimated using a descriptor
or ill-conditioned electro-mechanical dynamics allowed us
to estimate the inertia and damping of power systems with
a mix of synchronous and converter-interfaced generators.
The latter includes synchronous virtual machines and droop-
control-based generators for which the inertia constants are
exactly or approximately zero, thereby rendering the utility of
the existing inertia and damping estimation methods, which
almost always assume non-negligible inertia. We overcome
this limitation by studying a constrained least-squares esti-
mator on the descriptor-type dynamics, where the constraints

Fig. 2: Empirical probability distribution of the error deviation of
inertia and damping of generator labelled 3. For T = 50, the
top panel presents the histograms of error deviations of inertia for
various noise levels. The bottom panel presents similar plots for
damping. In both the panels, the spread increases (range of x-axis)
with increase in �. However, this is more pronounced for the case
of error deviations of damping constant.

Fig. 3: Empirical probability distribution of the error deviation of
inertia and damping of generator labelled 3. For T = 200, the
top panel presents the histograms of error deviations of inertia for
various noise levels. The bottom panel presents similar plots for
damping. Compared to Fig. 2, the distribution is more concentrated
around zero. This agrees with our intuition that estimation error
decreases with the increase in measurements.

set the inertia of droop-controlled generators to zero. We
argued that the proposed estimator is well-posed and admits
a unique solution, at least for a special case. Furthermore,
we discussed some limitations of the naı̈ve estimator in the
context of inertia and damping estimation.

Our analysis highlighted the role of network connectivity
on the estimators’ performance, which has not been properly
studied in the literature. In particular, using the closed-form
expressions of the estimators, we showed that for generators
with greater connectivity, estimation of the associated pa-
rameters is more susceptible to variations in other generator
states. Finally, our simulation results showed that estimating
the parameters by ignoring the ill-conditioning aspects yields



highly unreliable results.
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