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Grid Topology Identification With Hidden Nodes
via Structured Norm Minimization
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Abstract—This letter studies a topology identification
problem for an electric distribution grid using sign patterns
of the inverse covariance matrix of bus voltage magnitudes
and angles, while accounting for hidden buses. Assuming
the grid topology is sparse and the number of hidden buses
are fewer than those of the observed buses, we express the
observed voltages inverse covariance matrix as the sum of
three structured matrices: sparse matrix, low-rank matrix
with sparse factors, and low-rank matrix . Using the sign
patterns of the first two of these matrices, we develop an
algorithm to identify the topology of a distribution grid with
a minimum cycle length greater than three. To estimate the
structured matrices from the empirical inverse covariance
matrix, we formulate a novel convex optimization problem
with appropriate sparsity and structured norm constraints
and solve it using an alternating minimization method.
We validate the proposed algorithm’s performance on a
modified IEEE 33 bus system.

Index Terms—Power systems, smart grid, estimation,
atomic norm, and alternating minimization.

I. INTRODUCTION

THE KNOWLEDGE of electric distribution grid topology1

is crucial to many power system applications, including
state estimation, control of energy resources, and cybersecu-
rity [1], [2]. However, operators have limited or no access
to the grid’s topology in real-time, and they need to identify
it from measurements [1]. Identifying topology from mea-
surements is a challenging problem because of the nonlinear
relationship between the measured quantities and the topology,
noise in the measurements, and the compromised or missing
data.

Several data-driven methods have appeared in the litera-
ture for the topology identification problem. In [3], a linear
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1By topology, we mean physical connectivity (active lines or transformers)

among the buses in a distribution grid.

regression framework, with unknown predictors encoding
the topology, is used to identify the topology. Along these
lines, [1], [4] reconstructed topology by invoking the sparse
nature of the distribution grid via group and adaptive LASSO
formulations. In [5], a decision theoretic framework is used
to reconstruct tree structured grids; instead, [6] uses graph-
ical models to estimate tree and meshed grid topologies. In
contrast to the preceding offline methods, online methods for
joint estimation of topology and line parameters are consid-
ered in [7], [8]. Finally, topology identification in the presence
of hidden buses (unmeasured buses) is considered in [9].

Lately, [10] showed that the topology could be identified
using sparsity pattern of the inverse covariance matrix of volt-
age magnitude. Assuming the grid’s minimum cycle length
(MCL) is greater than three, [11] provided a simple topol-
ogy identification algorithm using sign patterns of the inverse
covariance matrix of voltage magnitudes and angles measure-
ments recorded from all the buses. By definition, radial grids
satisfy the MCL constraint; however, for meshed grids, the
preceding size constraint on MCL is necessary to uniquely
identify the topology [11]. For a recent summary on topology
identification from voltage correlations, see [12].

In this letter, for the grid topology identification problem
using voltage measurements, we relax (i) the full observabil-
ity assumption of [11] to the case where only a subset of buses
are measured (called the observed buses); and (ii) the MCL
assumption of greater than four in [13] to that of the theoreti-
cally possible limit of greater than three (see Theorem 2). Our
MCL assumption is the theoretical limit below which topol-
ogy identification is not possible (see Section IV). Further, via
numerical simulations, we show that the sparse plus low rank
decomposition method, used in [13, Algorithm 1], fails for spe-
cific grid topologies (see Remark 2). The main contributions
of our paper are as follows.

1) Assuming the underlying grid topology is sparse, and
no two hidden buses are adjacent, we decompose the
inverse covariance matrix of observed voltage mag-
nitudes and angles into structured matrices: sparse,
low-rank with sparse factors, and low-rank matrices.

2) We present a recursive method (Algorithm 1) to estimate
the grid’s topology with MCL greater than three using
sign patterns of the sparse and low-rank with sparse
factors matrices (see Theorem 2 for details).

3) We formulate a convex optimization problem with a
structured norm-based regularizer to estimate the struc-
tured matrices from the empirical covariance matrix.
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Finally, to solve the optimization problem, we propose
an alternating minimization algorithm that combines
ADMM and Frank-Wolfe methods.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

We represent a distribution grid of N + 1 buses with the
graph G := (V, E), where the nodes V = {1, . . . , N + 1}
and the edges (ij) ∈ E ⊆ V × V denote the buses and
the lines, respectively. A set of distinct undirected edges
Pk

i = {(il1), (l1l2), . . . , (lt−1, k)} that connect node i and j
is referred to as path of length of t. A cycle is a path Pk

i with
i = k and length greater than two, i.e., t > 2. The minimum
cycle length is the length of the smallest cycle. The neighbors
of a node i are the set of nodes j such that (ij) ∈ E . Nodes
i and j are referred to as k-hop neighbors if the shortest path
between them equals k.

A. Power Distribution Grid Model
Let pn + jqn and vn + jθn (where j =

√
−1) denote the

complex valued power injection and voltage at the bus n ∈ V .
We refer the quantities vn, θn, pn, and qn as voltage magnitude,
voltage phase, active power, and reactive power, respectively.
Let ynm = gnm + jβnm be the admittance of the line (nm),
where gnm and βnm are the conductance and susceptance, resp.
Consider the nonlinear power flow model:

pn + jqn =
∑

m:(nm)∈E
ynm[v2

n − vnvm exp(j(θm − θn))],

where n ∈ V . Following [11], [13], we assume that |θm −
θn| << 1 for (mn) ∈ E and |vn− 1| << 1. Thus, we have the
following linear coupled power flow (LC-PF) model:2

pn + jqn =
∑

m:(nm)∈E
ynm[(vn − vm)− j(θn − θm)]. (1)

Without loss of generality, we ignore the reference bus, r ∈ V ,
and consider the power flow model (1) for the remaining N
non-reference buses.

Let O ⊆ V be the set of observed (measured) buses of size
o, and Z := V \ O be the set of hidden (unmeasured) buses
of size z. Let vO = [vn1, . . . , vno ]T, θO = [θn1, . . . , θno ]T,
pO = [pn1, . . . , pno ]T, and qO = [qn1, . . . , qno ]T, where nj ∈
O. Let yT

O =
[
vT
O θT

O
]

and xT
O =

[
pT
O qT

O
]
, respectively, be

the vector of voltage magnitudes and angles and the vector of
real and reactive power injections of buses in O. Analogously,
define the quantities vZ , θZ , pZ , qZ , yZ and xZ for the buses
in Z .

For all n ∈ V , by doubling the complex valued equation (1)
into two real valued equations and rearranging terms, we have
the following equivalent representation for (1)

[
yO
yZ

]
=

[
HOO HOZ
HT
OZ HZZ

]−1

︸ ︷︷ ︸
!H−1

[
xO
xZ

]
, (2)

where H ∈ R2N×2N . Define the edge sets EOO ⊂ O × O,
EOZ ⊂ O × Z , and EZZ ⊂ Z × Z . Then, for any index

2In this letter, we use the linearized power flow model; however, due to
mathematical equivalence, our identification algorithm (see Section III-A) can
be used on the traditional linear circuit model as well.

Fig. 1. Line grid with 1 as the reference bus. The hidden bus is 3, and
the rest are the observed buses.

ζ ∈ {OO,OZ,ZZ}, it follows that

Hζ =
[

H(ζ )
g H(ζ )

β

H(ζ )
β −H(ζ )

g

]

(3)

with the (i, j)-th entry of H(ζ )
g (similarly for H(ζ )

β ) given by

H(ζ )
g (i, j) =






∑
l:(il)∈Eζ

gil, for i = j
−gij, for (ij) ∈ Eζ

0, otherwise.
(4)

From (4), notice that H(OZ)
g (i, j) = 0 when there is no edge

between buses i ∈ O and j ∈ Z . Similar conclusion holds
for H(OO)

g and H(ZZ)
g . Thus, blocks HOO, HOZ , and HZZ

encode the connectivity among the observed buses, between
an observed and a hidden bus, and among the hidden buses,
respectively; see Example 1. With a slight abuse of notation
we refer H in (2) to as the Laplacian matrix of G.

Example 1: Consider the line grid shown in Fig. 1.
For the grid in Fig. 1, yT

O =
[
v2 v4 v5 θ2 θ4 θ5

]
and

yT
Z =

[
v3 θ3

]
, and from (3) and (4), it follows that

HOO =





g23 0 0 β23 0 0
0 (g34 + g45) − g45 0 (β34 + β45) − β45

0 − g45 g45 0 − β45 β45

β23 0 0 − g23 0 0
0 (β34 + β45) − β45 0 − (g34 + g45) g45

0 − β45 β45 0 g45 − g45




;

HT
OZ =

[−g23 − g34 0 − β23 − β34 0
−β23 − β34 0 g23 g34 0

]
; HT

Z =
[

g̃24 β̃24

β̃24 −̃g24

]
;

where g̃24 = g23 + g34 and β̃24 = β23 + β34.

B. Stochastic Model for Power Injections and Voltages
We establish a relation between the Laplacian H (defined

in (2)) and the covariance matrix of (yO, yZ ). This relation
plays a key role in our topology identification algorithm, which
we discuss later. We begin with the following assumption.

Assumption 1 (Power injections): For n ∈ G, the power
injection xn = [pn, qn]T is a zero-mean Gaussian random vec-
tor with non-degenerate covariance matrix. Also, xm and xn
(for m (= n) are uncorrelated; that is, E[xmxT

n ] = 0.
The validity of Gaussian distribution for power injections

is discussed in [11], [12]. Under Assumption 1, E[xnxT
n ] need

not be diagonal; that is, we allow for correlations among the
real and reactive power injections at any bus. Since (xO, xZ )
is obtained by stacking xn, it follows that E[xOxT

Z ] = 0, and
the joint covariance matrix of (xO, xZ ) is given by

$(xO,xZ ) =E
[

xO
xZ

][
xT
O xT

Z
]

=
[
$xO,xO 0

0T $xZ ,xZ

]
, (5)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 12,2022 at 20:04:29 UTC from IEEE Xplore.  Restrictions apply. 



1246 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

where $xO,xO = E[xOxT
O] and $xZ ,xZ = E[xZxT

Z ] are the
cross covariance matrices. Note the difference in the subscript
notations of the joint- and cross-covariance matrices.

Let $(yO,yZ ) be the joint covariance matrix of the full
voltage vector (yO, yZ ), and consider the parmeterization

$−1
(yO,yZ ) =

[
$yO,yO $yO,yZ
$T

yO,yZ $yZ ,yZ

]−1

=
[

KOO KOZ
KT
OZ KZZ

]
. (6)

To obtain expressions for KOO, KOZ , and KZZ in terms of the
block matrices of H (2) proceed as follows. From (2) and (5),
first express $(yO,yZ ) in terms of $xO,xO and $xZ ,xZ . Then,
take the inverse of $−1

(yO,yZ ) to note the following:

KOO = HOO$−1
xO,xOHOO︸ ︷︷ ︸
!S

+ HOZ$−1
xZ ,xZ

HT
OZ︸ ︷︷ ︸

!L

KOZ = HOO$−1
xO,xOHOZ + HOZ$−1

xZ ,xZ HZZ

KZZ = HZZ$−1
xZ ,xZ HZZ + HT

OZ$−1
xO,xOHOZ . (7)

Using the Schur’s formula, we have the following formula to
evaluate the observed inverse covariance matrix:

$−1
yO,yO =(E[yOyT

O])−1 =KOO − KOZK−1
ZZKT

OZ︸ ︷︷ ︸
!M

. (8)

Thus, the inverse covariance matrix $−1
yO,yO , if it exists, can

always be decomposed as S+L−M. The conditions that ensure
the sparse nature of S and low-rank factorization of L are dis-
cussed in Section IV. Note that the triple (KOO, KOZ , KZZ )
encodes the complete grid topology via (HOO, HOZ , HZZ ).
Thus, the complete grid topology is also encoded in both the
full and the observed inverse covariance matrices, $−1

(yO,yZ )

and $−1
yO,yO , respectively.

Topology Identification Problem: Assuming the knowledge
of $−1

yO,yO (or an estimate of it) and the decomposition (8),
infer the non-zero entries (topology) of H in (2).

To address the above problem, we define a graph whose
edges are given by the non-zero entries of the full inverse
covariance $−1

(yO,yZ ). Formally, for the graph (VGM, EGM),
associate a random variable zn ∈ (yO, yZ ) to n-th node in
VGM = {1, . . . , 2N}. The size of VGM is 2N because for every
n-th bus, we have two scalars (vn, θn) ∈ (yO, yZ ). The edge
(n, m) (∈ EGM iff $−1

m,n = 0. In what follows, we characterize
the induced graph structures of $−1

yO,yO and KOO based on
(VGM, EGM) and the grid graph G = (V, E).

If (yO, yZ ) follows a zero-mean Gaussian distribution, the
graph (VGM, EGM) is equivalent to the underlying un-directed
graphical model. Recall that a graphical model encodes con-
ditional dependencies between pairs of random variables [14].

III. GRID TOPOLOGY IDENTIFICATION

This section provides an algorithm to identify the complete
grid topology of G using the sign pattern of KOO.

Let $
(OO)
pp = E[pOpT

O]; $
(OO)
qq = E[qOqT

O]; and $
(OO)
pq =

E[pOqT
O]. Similarly, let $

(OZ)
pp = E[pOpT

Z ], $
(OZ)
qq =

E[qOqT
Z ], and $

(OZ)
pq = E[pOqT

Z ].
Lemma 1: Let KOO = S + L be as in (7). Then,

S =
[

J(OO)
vv J(OO)

vθ
J(OO)
θv J(OO)

θθ

]

and L =
[

J(OZ)
vv J(OZ)

vθ
J(OZ)
θv J(OZ)

θθ

]

, (9)

Fig. 2. (a) Radial grid with one hidden bus. (b) Two-hop network for
the observed voltage magnitude and angles. Each bus of the radial grid
contributes to two nodes in the two-hop network. In (b), two nodal quan-
tities are connected by a solid (dashed) line if their underlying buses in
the radial grid are one-hop (two-hop) neighbors.

and for l ∈ {OO,OZ}, we have

J(l)
vv =H(l)

g [$̃(l)
qq H(l)

g −$̃(l)
pq H(l)

β ]−H(l)
β [$̃(l)

pq H(l)
g −$̃(l)

pp H(l)
β ];

J(l)
vθ =H(l)

g [$̃(l)
qq H(l)

β +$̃(l)
pq H(l)

g ]−H(l)
β [$̃(l)

pq H(l)
β +$̃(l)

pp H(l)
g ];

J(l)
θv =H(l)

β [$̃(l)
qq H(l)

g −$̃(l)
pq H(l)

β ]−H(l)
g [$̃(l)

pq H(l)
g −$̃(l)

pp H(l)
β ];

J(l)
θθ =H(l)

β [$̃(l)
qq H(l)

β +$̃(l)
pq H(l)

g ]+H(l)
g [$̃(l)

pq H(l)
β +$̃(l)

pp H(l)
g ];

where $̃
(l)
qq = (D(l))−1$

(l)
qq , and similarly for $̃

(l)
pp and $̃

(l)
pq , and

D(l)(i, i) = $
(l)
pp (i, i)$(l)

qq (i, i) − $
(l)
pq (i, i)$(l)

pq (i, i) for diagonal
D(l).

Proof: Invoke Assumption 1 and apply block matrix inver-
sion formula on $xO,xO and $xZ ,xZ to see that the inverses
are block matrices, with each block being a diagonal. The
expressions of J(l)

vv , J(l)
vθ , and J(l)

θθ can now be obtained by
explicit matrix multiplication.

Lemma 1 allows us to compute each entry of S and L (and
hence KOO) using the entries of Laplacian H. The following
result characterizes the graph of KOO.

Theorem 1 (Graphical Model of KOO: Two-Hop Network):
For graph G, the graphical model of KOO includes edges
between voltage magnitudes and phases that are at the same
observed bus, one-hop observed neighbor buses, and two-hop
observed neighbor buses.

Proof: We use the proof technique in [11]. We prove the
theorem by showing that there is no edge between voltage
magnitudes (v) and phases (θ) at the buses k ∈ O and l ∈ O
three or more hops away. This is equivalent to showing that
KOO(k, l) = KOO(k, 2l) = KOO(2k, l) = KOO(2k, 2l) = 0.
We show that KOO(k, l) = 0, and omit the details for the
remaining cases. Recall that KOO = S + L and consider
S(k, l) = [J(OO)

vv ]k,l. From Lemma 1, note that $̃
(OO)
qq , $̃

(OO)
qp ,

and $̃
(OO)
pp are all diagonals. Instead, the non-zero entries in

H(OO)
g (and H(OO)

β ) are the diagonal terms and the (i, j)-th
entries for which i ∈ O and j ∈ O are neighbors. By invoking
this observation and simplifying S, we see that S(k, l) = 0 if
k and l are neither neighbors nor have an observed neighbor
in common. Similarly, L(k, l) = 0 if k and l do not have an
hidden neighbor in common.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 12,2022 at 20:04:29 UTC from IEEE Xplore.  Restrictions apply. 



ANGULURI et al.: GRID TOPOLOGY IDENTIFICATION WITH HIDDEN NODES VIA STRUCTURED NORM MINIMIZATION 1247

Note that the two-hop neighbors in a graph are the nodes
connected by a shortest path of length two. Instead, two-hop
network has at most two-hop neighbors. Theorem 1 says that
the graph of KOO includes (spurious) edges between observed
nodal quantities even if their corresponding buses do not have
an edge in the grid; see Fig. 2. Note that unlike KOO, the
observed inverse covariance matrix $−1

yO,yO need not have a
two-hop network structure [11].

A. Topology Identification
We present an algorithm that identifies the complete grid

topology—that is, the edge connections among the observed
buses, between observed and hidden buses, and among the hid-
den buses—using the components S and L of KO (9). We begin
with an assumption that is necessary to uniquely identifying
the true topology [11], [13].

Assumption 2: In grid G, hidden buses are neither the leaf
nodes nor adjacent to each other.

Theorem 2 (Sign Based Rules for Topology Identification):
For grid G with a minimum cycle length (MCL) greater than
three, consider S and L in (9). Then,

1) [J(OO)
vv + J(OO)

θθ ]i,j < 0 iff (ij) is a true edge in G.
2) [J(OO)

vv + J(OO)
θθ ]i,j > 0 iff there is a path i−k−j linking

the observed buses i and j, and k is an observed bus.
3) [J(OZ)

vv +J(OZ)
θθ ]i,j >0 iff there is a path i−k−j linking

the observed buses i and j, where k is a hidden bus.
Proof: For part (i), we proceed as follows. If part: let i

and j be the observed neighbor buses and (ij) ∈ G. As the
minimum cycle length is greater than three, there are no com-
mon neighbors of i and j. Thus, from Lemma 1, we have
[J(OO)

vv +J(OO)
θθ ]i,j <0. Here, we used the fact that $̃

(l)
qq , $̃

(l)
pp ,

and $̃
(l)
pq are diagonals with positive entries. Only if: we prove

the contrapositive. Suppose i and j are not neighbors. If i and
j are more than two-hops away, from Theorem 1, we have
[J(OO)

vv ]i,j = [J(OO)
θθ ]i,j = 0. If i and j are two-hop neighbors

with a common observed neighbor, then from Lemma 1 it fol-
lows that [J(OO)

vv + J(OO)
θθ ]i,j > 0. Similarly, we can prove (ii)

and (iii), and the details are omitted.
If Z = ∅, [11, Th. 4] follows a corollary to Theorem 2.

Further, Theorem 2 (i) allows us to uniquely identify the
connectivity among any pair of observed buses. Instead,
Theorem 2 (ii)-(iii) can be used to identify connectiv-
ity between an observed and hidden bus. Finally, from
Assumption 2, notice that no two hidden buses share an edge.
Thus, we have the complete grid topology. We summarize
these steps in Algorithm 1, which requires components of S,
L (9) as an input. However, recall that we have access only to
$−1

yO,yO , but not to its decomposition (8). The thresholds τ1
and τ2 help us counteract the bias introduced by the sample
estimate of $−1

yO,yO . We discuss these issues in the following
sections.

Theorem 2 vs. [13, Th. 3]: Note that Theorem 2
and [13, Th. 3] primarily differs on the assumptions of size
of MCL. In particular, we require MCL to be at least four
and [13, Th. 3] requires MCL to be at least five. We high-
light that MCL of size four is the theoretically possible limit
on uniquely identifying topology using measurements alone.
In other words, there exist topologies with MCL size at most
three for which topology identification is not possible. Hence,

Algorithm 1: Grid Topology Identification

Input: Matrices J(OO)
vv , J(OO)

θθ , J(OZ)
vv , and J(OZ)

θθ ; o:=
dimension of $−1

yO,yO ; z := number of hidden
nodes; and thresholds τ1, τ2 > 0.

Output: Reconstructed graph Ĝ = (V̂, Ê)
1 initialization: V̂o = {1, . . . , o} and Êo = {}
2 for i ∈ V̂o, i < j do
3 if [J(OO)

vv + J(OO)
θθ ]i,j < −τ1 then Êo ← {(i, j)}

4 end
5 initialization: V̂ ← V̂o and Ê ← Êo
6 counter k = 1
7 for i ∈ V̂o, i < j do
8 if [J(OZ)

vv + J(OZ)
θθ ]i,j > τ2 then

9 V̂ ← V̂ ∪ {o + k}; Ê ← Ê ∪ {(i, o + k)}
10 k = k + 1
11 end
12 if k == z then break
13 end

our Algorithm 1 is applicable to several classes of distribution
grids than [13, Algorithm 1].

Remark 1: The statement of Theorem 2 may fail to hold
for a specific values of H (4) that lie in a zero measure
set. However, for all practical purposes, these specific values
should not hinder the applicability of our results.

IV. A CONVEX FRAMEWORK TO DECOMPOSE
OBSERVED INVERSE COVARIANCE MATRIX OF VOLTAGES

This section presents an optimization framework to extract
matrices—S, L, and the number of hidden nodes—which are
inputs to Algorithm 1, from the sample covariance matrix

$̂ = 1
T

T∑

t=1

(
y(t)
O − yO

)(
y(t)
O − yO

)T
, (10)

where y(t) are the i.i.d samples, and yO = T−1 ∑T
t=1 y(t) is

the sample mean. We discuss a few properties of the triple
(S, L, M) (8) that helps us decompose $̂−1 into Ŝ + L̂ − M̂,
where the hatted terms are the sample estimates.

Recall that distribution grids have sparse connections [1].
Thus, the Laplaican H is sparse, and hence S (7) is sparse.
Instead, ranks of L and M are much smaller than that of S.
In fact, from (7) and (8), we have Rank(L), Rank(M) ≤ 2z;
where as, from Assumption 2, Rank(S) = 2o >> 2z.

Further, M can be dense (non-sparse), provided there are
sufficient number of connections between observed neigh-
bors and non-neighbors of a hidden bus; see Fig. 3; Instead,
L, although non-sparse, admits a low-rank factorization with
sparse factors. To see this, let supp(M) be the support of M: a
(0, 1)-matrix with (i, j)-th entry equal to 1 if [M]i,j (= 0, and
equal to zero, otherwise.

Proposition 1: (a) There is a unique B with $−1
xZ ,xZ

=
B2 such that L = (HOZB)(HOZB)T and supp(HOZ ) =
supp(HOZB), and (b) the i- and 2i-th columns of HOZ are
each (at most) 2si-sparse, where si is the number of observed
neighbors of the i-th hidden bus.

Proof (Part (a)): From Assumption 1, note that $xZ ,xZ
is 2 × 2 block matrix with blocks being diagonal (call this
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property P), and so is $−1
xZ ,xZ

(follows by direct evaluation).
Thus, there is a permutation matrix & and a block diago-
nal matrix M such that $−1

xZ ,xZ
= &M&T. Let M = B̃2,

for a block diagonal B̃, and define B = (&B̃&T). Then,
$−1

xZ ,xZ
= B2, where we use the identity &&T = I. Note

that B not only satisfies the property P , but is unique because
$−1

xZ ,xZ
is a positive definite matrix. Using these facts, we have

supp(HOZ ) = supp(HOZB). Part (b): For a hidden bus i ∈ Z ,
from (3) and (4), the i-th (or 2i-th) column of HOZ is the con-
catenation of i-th column of H(OZ)

g and that of H(OZ)
β , each

column being si-sparse. Thus, the i- and 2i-th columns of HOZ
are each 2si-sparse.

From Proposition 1 we note that L is a low-rank matrix
with sparse factors, provided si is not large; we illustrate this
property in Fig. 3. Here L = uuT, for uT = [u1 , u2], and
uj = [ ' ' ' ' 0 0 ' ' ' ' 0 0]T is 8-sparse, where ' means a
non-zero entry.

Before we present our optimization framework that allows
us recover (̂S, L̂, M̂) from (10), we recall the notion of an
atomic norm—when used as a regularizer in (12) promotes
low-rank factorization property of L. To that end, let X ∈
Rm×m satisfy X = ∑

i=1 ciai, where ci ≥ 0; ai ∈ A ⊆ Rm×m

are the atoms; and A ⊂ Rm×m is the atomic set. Then, the
atomic norm [15] of X is given by

‖X‖A = inf

{
∑

i

ci : X =
∑

i=1

ciai, ci ≥ 0, ai ∈ A
}

.

The atomic norm returns the minimal sum of weights ci
over all decompositions of X with respect to the set A. For
example, the atomic set of trace norm (sum of singular values
of A) is the set of rank-one matrices with unit norm: A =
{uvT, ‖u‖2 =‖v‖2 =1}. Thus, smaller the trace-norm, smaller
the Rank(X). However, we require L to be a low-rank matrix
with sparse factors. To capture this structure, let A = ∪kAk,
where Ak = {uuT : ‖u‖2 = 1, ‖u‖0 ≤ k}, and consider the
resulting structured atomic norm [16], [17]

((X) = inf
{ ∑

i

m∑

k=1

ωkci,k : X =
∑

i

m∑

k=1

ci,kai,k,

× ci,k ≥ 0, and ui,k ∈ Ak

}
, (11)

where ‖ · ‖2 is the Euclidean norm, and the norm ‖u‖0 counts
the number of non-zero entries in u. The weights wk ≥ 0 can
be used to give importance to the sparsity level k. Higher the
weight, sparser the columns of optimal X.

A. Convex Optimization Framework
Consider the following convex optimization problem that

recovers S, L, and E with aforementioned properties

(̂S, L̂, M̂) = arg min
S,L,M

*(S + L−M; $̂)+R(S, L, M)

s.t. S + L−M / 0, L / 0, M / 0, (12)

where *(·) is a loss function, which we shall discuss below,
and the structure promoting regularizer R(·) is given by

R(S, L, M) = λ1‖S‖1 + λ2((L) + λ3tr(M), (13)

Algorithm 2: Alternating Minimization

Input: Sample covariance matrix $̂ ∈ R2o×2o; maximum
iterations Tin and Tout.

Intialization: Ŝ0 = 0; L̂0 = 0; and Ê0 = 0.
1 for t = 1:Tout do
2 Fix L̂t−1, and apply ADMM on (12) for Tin iterations

to compute St and Et.
3 Fix Ŝt−1 and Êt−1, and apply FCG on (12) to

compute L̂t.
4 end

Return: The recovered matrices (̂St, L̂t, Êt).

and λi ≥ 0. The ‖S‖1 := ∑
i,j |sij| norm enforces sparsity

among the observed buses, the tr(M)-norm enforces the low-
rank property, and the atomic norm ((L) enforces L to be a
low-rank matrix with sparse factors.

In Gaussian graphical model selection problems, for K 0 0,
one lets *(K; $̂) = − log det(K)+tr(K$), and solve (12) using
proximal methods, such as the alternating direction multiplier
method (ADMM) [17]. However, evaluating the proximal
operator of ((L) is computationally demanding. To overcome
this problem, we solve (12) using an alternating minimization
method (see below) that combines ADMM and the fast col-
umn generation (FCG) method—a variant of Frank-Wolfe
method [15]. We use the quadratic loss function [18]

*(K; $̂) = 1
2

tr(K$̂K)− tr(K). (14)

Here *(K; $̂) is convex in K, and the unique minimizer of
*(K; $̂) occurs at $̂−1; see [18] for more details.

We provide only a brief description of alternating
minimization method in Algorithm 2. For the line 2 in
Algorithm 2, we use the standard ADMM (the detailed steps
are given in [19]). For Line 3 in Algorithm 2, we use the FCG
method (the detailed steps are given in [15, Algorithm 1]).

Remark 2 (Ineffectiveness of Sparse and (One) Low Rank
Decomposition): In [13], the authors use a sparse plus trace
norm regularizer to decompose $−1

yO,yO into matrices (S + L)
and M. For this naïve regularizer to work, matrix S + L needs
to be sufficiently sparse. However, for sparsely connected
distribution networks, S+L maybe non-sparse. In fact, in Fig.
3, for a sparse radial network, we demonstrate that S+L is non-
sparse (the first column is full). Instead, in the right-bottom
of Fig. 3, we show that S is sparse and L is low-rank with
sparse factors (also see text below Proposition 4.1). From this
discussion, we conclude that one should consider sophisticated
regularizers, such as (13), to accurately decompose the inverse
covariance matrices that arise from structured models, such as
the power flow model (2).

V. NUMERICAL SIMULATIONS

We evaluate and compare the performance of Algorithm 1
with that of [13, Algorithm 1] on a modified IEEE 33 bus
distribution grid with three hidden nodes; see Fig. 4. We add
extra edges to ensure that the grid’s minimum cycle length
is greater than three and the hidden nodes are not adjacent
to each other. The power injection (xO, xZ ) is modeled as
an i.i.d. zero-mean Gaussian random vector with covariance
matrix σ 2I2N×2N (where N = 32) and σ 2 = 0.1. The observed
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Fig. 3. (Left) radial grid with one hidden bus and six observed
buses. (Right) visualization of components of $−1

yO ,yO : blue and yellow
boxes indicate zero and non-zero entries. (Right-top) decomposition of
$−1

yO ,yO into non-sparse and dense low-rank matrices. (Right-bottom)
decomposition of $−1

yO ,yO into a sparse matrix, a low-rank matrix with
sparse factors, and a dense low-rank matrix.

Fig. 4. Modified IEEE 33 bus system with a minimum cycle length of
size four. Bus 1 is the reference bus. The three hidden buses, labeled
{3, 7, 13}, are more than two-hops away.

Fig. 5. Relative estimation error in Algorithm 1 and Algorithm used
in [13] for the reconstructed topology over 10 independent trails.

voltage samples yO are generated from the linear model (1).
Using these samples, we obtain matrices S and L, given as an
input to Algorithm 1, by solving optimization problem (12).
Instead, as suggested in [13], we employ a low-rank plus
sparse decomposition method to obtain matrix S + L, given
as an input [13, Algorithm 1]. Finally, we set τ1 = τ2 = 0.1.
We assess the accuracy of both the algorithms by relative esti-
mation error (REE): the ratio of the sum of false and missed
edges to that of the number of true edges in E . Fig. 5 shows
that the REE for both the algorithms decrease with an increase
in the sample size. Furthermore, Algorithm 1 has a minimum
REE compared with that of [13, Algorithm 1].

VI. CONCLUSION

This letter provides an algorithm to identify the unknown
topology of a distribution grid from bus voltage magnitude and
angle measurements, while accounting for hidden buses. Our
identification algorithm relies on the sign patterns of the sparse
and low-rank (with sparse factors) components of the inverse
covariance matrix of observed voltages. By carefully study-
ing the nuanced structure of the inverse covariance matrix, we
relaxed the existing minimum cycle length conditions [13]. We
validated our algorithm’s performance on a modified IEEE-
33 bus test system. Future works include obtaining theoretical
conditions (e.g., subspace incoherency condition) under which
the inverse covariance matrix can be decomposed into the
required structural components.
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